【題目】如圖,已知A(-4,2)、B(n,-4)是一次函數(shù)的圖象與反比例函數(shù)的圖象的兩個交點.
(1) 求反比例函數(shù)和一次函數(shù)的解析式;
(2) 根據(jù)圖象寫出使一次函數(shù)的值小于反比例函數(shù)的值的x的取值范圍.
【答案】(1), ;(2)或
【解析】
(1)先把A(-4,2)代入求出m=-8,從而確定反比例函數(shù)的解析式為;再把B(n,-4)代入求出n=2,確定B點坐標(biāo)為(2,-4),然后利用待定系數(shù)法確定一次函數(shù)的解析式;
(2)觀察圖象得到當(dāng)-4<x<0或x>2時,一次函數(shù)的圖象都在反比例函數(shù)圖象的下方,即一次函數(shù)的值小于反比例函數(shù)的值.
(1)把A(-4,2)代入得m=-4×2=-8,
∴反比例函數(shù)的解析式為;
把B(n,-4)代入y得-4n=-8,解得n=2,
∴B點坐標(biāo)為(2,-4),
把A(-4,2)、B(2,-4)分別代入y=kx+b得
,
解方程組得,
∴一次函數(shù)的解析式為y=-x-2;
(2)觀察圖象得到當(dāng)-4<x<0或x>2時,一次函數(shù)的值小于反比例函數(shù)的值.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,邊長為2的正方形ABCD,點P從點A出發(fā)以每秒1個單位長度的速度沿A﹣D﹣C的路徑向點C運動,同時點Q從點B出發(fā)以每秒2個單位長度的速度沿B﹣C﹣D﹣A的路徑向點A運動,當(dāng)Q到達(dá)終點時,P停止移動,設(shè)△PQC的面積為S,運動時間為t秒,則能大致反映S與t的函數(shù)關(guān)系的圖象是( 。
A.B.
C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形中,,.已知A(-2,0)、B(6,0)、D(0,3)反比例函數(shù)的圖象經(jīng)過點.
(1)求點的坐標(biāo)和反比例函數(shù)的解析式;
(2)將四邊形沿軸向上平移個單位長度得到四邊形,問點是否落在(1)中的反比例函數(shù)的圖象上?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC在平面直角坐標(biāo)系中的位置如圖所示.請解答:
(1)點A、C的坐標(biāo)分別是 、 ;
(2)畫出△ABC繞點A按逆時針方向旋轉(zhuǎn)90°后的△AB'C';
(3)在(2)的條件下,求點C旋轉(zhuǎn)到點C'所經(jīng)過的路線長(結(jié)果保留π).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知AB是⊙O的的直徑,弦CD與AB相交,∠BCD=25°。
(1)如圖1,求∠ABD的大。
(2)如圖2,過點D作O的切線,與AB的延長線交于點P,若DP∥AC,求∠OCD的度數(shù)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一個不透明的布袋里裝有4個標(biāo)有1,2,3,4的小球,它們的形狀、大小、質(zhì)地完全相同,小李從布袋里隨機(jī)取出一個小球,記下數(shù)字為x,小張在剩下的3個小球中隨機(jī)取出一個小球,記下數(shù)字為y,這樣確定了點Q的坐標(biāo)(x,y).
(1)畫樹狀圖或列表,寫出點Q所有可能的坐標(biāo);
(2)求點Q(x,y)在函數(shù)y=﹣x+5圖象上的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中, 對角線AC、BD相交于點O. E、F是對角線AC上的兩個不同點,當(dāng)E、F兩點滿足下列條件時,四邊形DEBF不一定是平行四邊形( ).
A.AE=CFB.DE=BFC.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某公司開發(fā)出一款新包裝的牛奶,牛奶的成本價為6元/盒,這種新包裝的牛奶在正式投放市場前通過代銷點進(jìn)行了為期一個月(30天)的試營銷,售價為8元/盒.前幾天的銷量每況愈下,工作人員對銷售情況進(jìn)行了跟蹤記錄,并將記錄情況繪成圖象,圖中的線段表示前12天日銷售量y(盒)與銷售時間x(天)之間的函數(shù)關(guān)系,于是從第13天起采用打折銷售(不低于成本價),時間每增加1天,日銷售量就增加10盒.
(1)打折銷售后,第17天的日銷售量為________盒;
(2)求y與x之間的函數(shù)關(guān)系式,并寫出x的取值范圍;
(3)已知日銷售利潤不低于560元的天數(shù)共有6天,設(shè)打折銷售的折扣為a折,試確定a的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在邊長為1的小正方形組成的網(wǎng)格中,△ABC的頂點均在格點上,請按要求完成下列各題.
(1)以原點O為對稱中心作△ABC的中心對稱圖形,得到△A1B1C1,請畫出△A1B1C1,并直接寫出點A1,B1,C1的坐標(biāo);
(2)求出△ABC的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com