【題目】如圖,在Rt△OAB中,∠OAB=90°,OA=AB=6,將△OAB繞點(diǎn)O沿逆時(shí)針方向旋轉(zhuǎn)90°得到△OA1B1.
(1)線段OA1的長是 ,∠AOB1的度數(shù)是 ;
(2)連接AA1,求證:四邊形OAA1B1是平行四邊形;
(3)求四邊形OAA1B1的面積.
【答案】(1)6;135°;(2)證明見解析;(3)36.
【解析】
試題分析:(1)圖形在旋轉(zhuǎn)過程中,邊長和角的度數(shù)不變;
(2)可證明OA∥A1B1且相等,即可證明四邊形OAA1B1是平行四邊形;
(3)平行四邊形的面積=底×高=OA×OA1.
試題解析:(1)因?yàn)椋?/span>∠OAB=90°,OA=AB,
所以,△OAB為等腰直角三角形,即∠AOB=45°,
根據(jù)旋轉(zhuǎn)的性質(zhì),對(duì)應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等,即OA1=OA=6,
對(duì)應(yīng)角∠A1OB1=∠AOB=45°,旋轉(zhuǎn)角∠AOA1=90°,
所以,∠AOB1的度數(shù)是90°+45°=135°.
(2)∵∠AOA1=∠OA1B1=90°,
∴OA∥A1B1,
又∵OA=AB=A1B1,
∴四邊形OAA1B1是平行四邊形.
(3)OAA1B1的面積=6×6=36.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖所示,△ABC為任意三角形,若將△ABC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)180°得到△DEC。
(1)試猜想AE與BD有何關(guān)系?說明理由;
(2)請(qǐng)給△ABC添加一個(gè)條件,使旋轉(zhuǎn)得到的四邊形ABDE為矩形,并說明理由
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知一個(gè)一元二次方程的一個(gè)根為2,且常數(shù)項(xiàng)為0,則這個(gè)一元二次方程可以是 . (只需寫出一個(gè)方程即可)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】平面直角坐標(biāo)系中,已知ABCD的三個(gè)頂點(diǎn)坐標(biāo)分別是A(m,n),B(2,﹣1),C(﹣m,﹣n),則點(diǎn)D的坐標(biāo)是( )
A.(﹣2,1) B.(﹣2,﹣1) C.(﹣1,﹣2) D.(﹣1,2)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com