【題目】如圖,在△ABC中,∠ABC和∠ACB的平分線相交于點O,過點O作EF∥BC交AB于E,交AC于F,過點O作OD⊥AC于D,下列四個結論:
①EF=BE+CF;
②∠BOC=90°+∠A;
③點O到△ABC各邊的距離相等;
④設OD=m,AE+AF=n,則S△AEF=mn.
其中正確的結論是( 。
A.①②③B.①②④C.②③④D.①③④
【答案】A
【解析】
由在△ABC中,∠ABC和∠ACB的平分線相交于點O,根據角平分線的定義與三角形內角和定理,即可求得②∠BOC=90°+∠A正確;由平行線的性質和角平分線的定義得出△BEO和△CFO是等腰三角形得出EF=BE+CF,故①正確;由角平分線的性質得出點O到△ABC各邊的距離相等,故③正確;由角平分線定理與三角形面積的求解方法,即可求得③設OD=m,AE+AF=n,則S△AEF=mn,故④錯誤.
∵在△ABC中,∠ABC和∠ACB的平分線相交于點O,
∴∠OBC=∠ABC,∠OCB=∠ACB,∠A+∠ABC+∠ACB=180°,
∴∠OBC+∠OCB=90°﹣∠A,
∴∠BOC=180°﹣(∠OBC+∠OCB)=90°+∠A;故②正確;
∵在△ABC中,∠ABC和∠ACB的平分線相交于點O,
∴∠OBC=∠OBE,∠OCB=∠OCF,
∵EF∥BC,
∴∠OBC=∠EOB,∠OCB=∠FOC,
∴∠EOB=∠OBE,∠FOC=∠OCF,
∴BE=OE,CF=OF,
∴EF=OE+OF=BE+CF,
故①正確;
過點O作OM⊥AB于M,作ON⊥BC于N,連接OA,
∵在△ABC中,∠ABC和∠ACB的平分線相交于點O,
∴ON=OD=OM=m,
∴S△AEF=S△AOE+S△AOF=AEOM+AFOD=OD(AE+AF)=mn;故④錯誤;
∵在△ABC中,∠ABC和∠ACB的平分線相交于點O,
∴點O到△ABC各邊的距離相等,故③正確.
故選:A.
科目:初中數學 來源: 題型:
【題目】在等邊三角形ABC中,點D是BC的中點,點E、F分別是邊AB、AC(含線段AB、AC的端點)上的動點,且∠EDF=120°,小明和小慧對這個圖形展開如下研究:
問題初探:
(1)如圖1,小明發(fā)現:當∠DEB=90°時,BE+CF=nAB,則n的值為______;
問題再探:
(2)如圖2,在點E、F的運動過程中,小慧發(fā)現兩個有趣的結論:
①DE始終等于DF;②BE與CF的和始終不變;請你選擇其中一個結論加以證明.
成果運用
(3)若邊長AB=4,在點E、F的運動過程中,記四邊形DEAF的周長為L,L=DE+EA+AF+FD,則周長L的變化范圍是______.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在連接A、B兩市的公路之間有一個機場C,機場大巴由A市駛向機場C,貨車由B市駛向A市,兩車同時出發(fā)勻速行駛,圖中線段、折線分別表示機場大巴、貨車到機場C的路程y(km)與出發(fā)時間x(h)之間的函數關系圖象.
(1)直接寫出連接A、B兩市公路的路程以及貨車由B市到達A市所需時間.
(2)求機場大巴到機場C的路程y(km)與出發(fā)時間x(h)之間的函數關系式.
(3)求機場大巴與貨車相遇地到機場C的路程.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ABC=90°,AC=15cm,BC=12cm,點D是線段AC的中點,動點P從A﹣D﹣B﹣C向終點C出發(fā),速度為5cm/s,當點P不與點A、B重合時,作PE⊥AB交線段AB于點E,設點P的運動時間為t(s),△APE的面積為S(cm2).
(1)寫出線段AB的長;
(2)當點P在線段BD上時,求PE的長(用含t的式子表示);
(3)當點P沿A﹣D﹣B運動時,用含t的代數式表示S;
(4)點E關于直線AP的對稱點為E′,當點E′落在△ABC的內部時,直接寫出t的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某次學生夏令營活動,有小學生、初中生、高中生和大學生參加,共200人,各類學生人數比例見扇形統(tǒng)計圖.
(1)參加這次夏令營活動的初中生共有多少人?
(2)活動組織者號召參加這次夏令營活動的所有學生為貧困學生捐款.結果小學生每人
捐款 5 元,初中生每人捐款 10 元,高中生每人捐款 15 元,大學生每人捐款 20 元.問平均 每人捐款是多少元?
(3)在(2)的條件下,把每個學生的捐款數額(以元為單位)——記錄下來,則在這組數據中,眾數是多少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知△ABC中,∠C=90°,點M從點C出發(fā)沿CB方向以1cm/s的速度勻速運動,到達點B停止運動,在點M的運動過程中,過點M作直線MN交AC于點N,且保持∠NMC=45°.再過點N作AC的垂線交AB于點F,連接MF,將△MNF關于直線NF對稱后得到△ENF.已知AC=8cm,BC=4cm,設點M運動時間為t(s),△ENF與△ANF重疊部分的面積為y(cm2).
(1)用含t的代數式表示出NC與NF;
(2)在點M的運動過程中,能否使得四邊形MNEF為正方形?如果能,求出相應的t值,如果不能,說明理由;
(3)求y與t的函數關系式及相應t的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】下面是某同學對多項式進行因式分解的過程.
解:設,
原式(第一步)
(第二步)
(第三步)
(第四步)
回答下列問題:
(1)該同學第二步到第三步運用了因式分解的_____________.
A.提取公因式 B.平方差公式
C.兩數和的完全平方公式 D.兩數差的完全平方公式
(2)該同學因式分解的結果是否徹底__________(填“徹底”或“不徹底”)
若不徹底,請直接寫出因式分解的最后結果_____________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:如圖,在△ABC中,AC=BC,以BC為直徑的⊙O與邊AB相交于點D,DE⊥AC,垂足為點E.
(1)求證:點D是AB的中點;
(2)求證:DE是⊙O的切線;
(3)若⊙O的直徑為18,cosB=,求DE的長.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com