【題目】(1)例:代數(shù)式(a+b)2表示a、b兩數(shù)和的平方.仿照上例填空:
代數(shù)式a2﹣b2表示_____.
代數(shù)式(a+b)(a﹣b)表示_____.
(2)試計(jì)算a、b取不同數(shù)值時,a2﹣b2及(a+b)(a﹣b)的植,填入下表:
(3)請你再任意給a、b各取一個數(shù)值,并計(jì)算a2﹣b2及(a+b)(a﹣b)的植:
當(dāng)a=_____,b=_____時,a2﹣b2=_____,(a+b)(a﹣b)=_____.
(4)我的發(fā)現(xiàn):_____.
(5)用你發(fā)現(xiàn)的規(guī)律計(jì)算:78.352﹣21.652.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖1,在四邊形ABCD中,∠D=37°,點(diǎn)E是BC邊上一點(diǎn),沿AE折疊,點(diǎn)B落在AD上B′處,若B′E∥CD,則∠B=_________°.
(2)如圖2,在四邊形ABCD中,AB∥CD,點(diǎn)E是BC邊上一點(diǎn),沿AE折疊,點(diǎn)B落在AD上B′處,點(diǎn)F是BC邊上一點(diǎn),沿DF折疊,點(diǎn)C落在AD上C′處.B′E與C′F有何位置關(guān)系?為什么?
(3)如圖3,在四邊形ABCD中,∠B=∠D=90°,點(diǎn)E是BC邊上一點(diǎn),沿AE折疊,點(diǎn)B落在AD上B′處,點(diǎn)F是AD邊上一點(diǎn),沿CF折疊,點(diǎn)D落在BC上D′處.試問:AE與CF有何位置關(guān)系?說明理由.
(4)在四邊形ABCD中,點(diǎn)E是BC邊上一點(diǎn),沿AE折疊.
①若點(diǎn)B落在四邊形ABCD內(nèi)B′處(如圖4),則∠1,∠2,∠BAD,∠B之間的數(shù)量關(guān)系為________.
②若點(diǎn)B落在四邊形ABCD外B′處(如圖5),則∠1,∠2,∠BAD,∠B之間的數(shù)量關(guān)系為 ______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校計(jì)劃購買甲、乙兩種樹苗共1000株用以綠化校園,甲種樹苗每株25元,乙種樹苗每株30元,通過調(diào)查了解,甲,乙兩種樹苗成活率分別是90%和95%.
(1)若購買這種樹苗共用去28000元,則甲、乙兩種樹苗各購買多少株?
(2)要使這批樹苗的總成活率不低于92%,則甲種樹苗最多購買多少株?
(3)在(2)的條件下,應(yīng)如何選購樹苗,使購買樹苗的費(fèi)用最低?并求出最低費(fèi)用.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】今年某區(qū)為綠化行車道,計(jì)劃購買甲、乙兩種樹苗共計(jì)n棵.設(shè)購買甲種樹苗x棵,有關(guān)甲、乙兩種樹苗的信息如圖所示.
(1)當(dāng)n=500時,
①根據(jù)信息填表(用含x的式子表示);
樹苗類型 | 甲種樹苗 | 乙種樹苗 |
購買樹苗數(shù)量(單位:棵) | x | |
購買樹苗的總費(fèi)用(單位:元) |
②如果購買甲、乙兩種樹苗共用去25 600元,那么甲、乙兩種樹苗各購買了多少棵?
(2)要使這批樹苗的成活率不低于92%,且使購買這兩種樹苗的總費(fèi)用為26 000元,求n的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖是一個組合幾何體,右邊是它的兩種視圖,在右邊橫線上填寫出兩種視圖的名稱;
視圖 視圖
(2)根據(jù)兩種視圖中尺寸(單位:cm),計(jì)算這個組合幾何體的表面積.(π取3.14)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】兩個城鎮(zhèn)A、B與兩條公路l1、l2位置如圖所示,電信部門需在C處修建一座信號發(fā)射塔,要求發(fā)射塔到兩個城鎮(zhèn)A、B的距離必須相等,到兩條公路l1,l2的距離也必須相等,那么點(diǎn)C應(yīng)選在何處?請?jiān)趫D中,用尺規(guī)作圖找出所有符合條件的點(diǎn)C.(不寫已知、求作、作法,只保留作圖痕跡)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB =AC=2,∠B = 40°,點(diǎn)D在線段BC上運(yùn)動(不與點(diǎn)B,C重合),連接AD,作∠ADE = 40°,DE交線段AC于點(diǎn)E.
(1)當(dāng)∠BDA = 115°時,∠BAD= °,∠DEC = °,當(dāng)點(diǎn)D從點(diǎn)B向點(diǎn)C運(yùn)動時,∠BDA逐漸變 (填“大”或“小”) .
(2)當(dāng)DC等于多少時,△ABD≌△DCE?請說明理由.
(3)在點(diǎn)D的運(yùn)動過程中,是否存在△ADE是等腰三角形?若存在,請直接寫出此時∠BDA的度數(shù);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在邊長為1個單位長度的小正方形組成的網(wǎng)格中.
(1)把 平移至的位置,使點(diǎn)與對應(yīng),得到;
(2)運(yùn)用網(wǎng)格畫出邊上的高所在的直線,標(biāo)出垂足;
(3)線段與的關(guān)系是_____________;
(4)如果是按照先向上4格,再向右5格的方式平移到,那么線段在運(yùn)動過程中掃過的面積是___________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的邊長為1,AB邊上有一動點(diǎn)P,連接PD,線段PD繞點(diǎn)P順時針旋轉(zhuǎn)90°后,得到線段PE,且PE交BC于F,連接DF,過點(diǎn)E作EQ⊥AB的延長線于點(diǎn)Q.
(1)求線段PQ的長;
(2)問:點(diǎn)P在何處時,△PFD∽△BFP,并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com