如圖,在梯形ABCD中,ADBC,AB=DC,∠ACB=40°,∠ACD=30°,則∠B=______°,∠D=______°.
∵ADBC,AB=DC,
∴四邊形ABCD是等腰梯形,
∴∠B=∠BCD=∠ACB+∠ACD=70°,∠D=180°-∠BCD=110°.
故答案為:70,110.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:不詳 題型:解答題

已知等腰梯形ABCD中ADBC,BD平分∠ABC,BD⊥DC,且梯形ABCD的周長為30cm,則求AD的長.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖1所示,在直角梯形ABCD中,ADBC,∠DCB=75°,AB⊥BC,以CD為一邊的等邊△DCE的另一頂點E在腰AB上.
(1)求∠AED的度數(shù);
(2)求證:AB=BC;
(3)如圖2所示,若F為線段CD上一點,∠FBC=30°,△BFC的面積=4cm2,求AB的長度.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

若等腰梯形兩底之差等于一腰長,則此梯形中的一銳角的度數(shù)為______.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,梯形ABCD中,ADBC,∠ABD=∠C,AB=2,AD=1.6,CD=3.
(1)求BD,BC的長;
(2)畫出△BCD的外接圓(不寫畫法,保留作圖痕跡),并指出AD是否為該圓的切線;
(3)計算tanC的值.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在直角梯形ABCD中,ADBC,AB⊥BC,∠DCB=75°,以CD為一邊的等邊△DCE的另一頂點E在腰AB上.
(1)求∠AED的度數(shù);
(2)求證:AB=BC.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知在梯形ABCD中,ADBC,BD⊥CD,BD平分∠ABC,且∠C=60°,CD=20,試求AD的長.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知:如圖,等腰梯形ABCD中,ADBC,AB=DC,點P是腰DC上的一個動點(P與D、C不重合),點E、F、G分別是線段BC、PC、BP的中點.
(1)試探索四邊形EFPG的形狀,并說明理由;
(2)若∠A=120°,AD=2,DC=4,當PC為何值時,四邊形EFPG是矩形并加以證明.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

等腰梯形的銳角為60°,上底為3cm,腰長是4cm,則下底長為______cm.

查看答案和解析>>

同步練習冊答案