【題目】一個直角三角形的兩條直角邊分別長3cm,4cm,則它的內(nèi)心和外心之間的距離為________

【答案】

【解析】

如圖,E為直角三角形ABC的內(nèi)心,F(xiàn)為直角三角形ABC的外心,

過E作ET⊥BC于T,ER⊥AC于R,過F作FM⊥AC于M,TE交FM于N,

則ER=ET,∠C=∠ERC=∠ETC=90°

∴ERCT是正方形,

∴ER=RC=CT=ET,

∵∠FMC=∠C=∠NTC=90°

∴四邊形MCTN是矩形,

∴CT=MN,CM=NT,

∵F為AB中點(diǎn),F(xiàn)M∥BC,

∴M為AC中點(diǎn),

∴FM=BC=1.5,MC=AM=2,

設(shè)直角三角形ABC的內(nèi)切圓的半徑是r,

則ER=RC=CT=ET,

根據(jù)切線長定理得:3r+4r=5,

r=1,

即ER=RC=CT=ET=MN=1,

∴MR=21=1,

在Rt△ENF中,EN=MR=1,F(xiàn)N=1.51=0.5,由勾股定理得:EF==,

故答案為:.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,已知在數(shù)軸上有A、B兩點(diǎn),點(diǎn)A表示的數(shù)是,點(diǎn)B表示的數(shù)是9.點(diǎn)

P在數(shù)軸上從點(diǎn)A出發(fā),以每秒2個單位的速度沿數(shù)軸正方向運(yùn)動,同時,點(diǎn)Q在數(shù)軸上從

點(diǎn)B出發(fā),以每秒3個單位的速度在沿數(shù)軸負(fù)方向運(yùn)動,當(dāng)點(diǎn)Q到達(dá)點(diǎn)A時,兩點(diǎn)同時停止

運(yùn)動.設(shè)運(yùn)動時間為.

1AB= 時,點(diǎn)Q表示的數(shù)是 ;當(dāng) 時,P、Q兩點(diǎn)相遇;

2)如圖2,若點(diǎn)M為線段AP的中點(diǎn),點(diǎn)N為線段BP中點(diǎn),點(diǎn)P在運(yùn)動過程中,線段MN的長度是否發(fā)生變化?若變化,請說明理由;若不變,請求出線段MN的長;

3)如圖3,若點(diǎn)M為線段AP的中點(diǎn),點(diǎn)T為線段BQ中點(diǎn),則點(diǎn)M表示的數(shù)為________;點(diǎn)T表示的數(shù)為________ MT=_________ .(用含t的代數(shù)式填空)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列語句中錯誤的是(

A. 相反數(shù)是本身的數(shù)是0B. 倒數(shù)是本身的數(shù)是﹣11

C. 絕對值最小的數(shù)是0D. 任何有理數(shù)都有倒數(shù)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,經(jīng)過點(diǎn)A(-4,4)的拋物線y=ax2+bx+c與x軸相交于點(diǎn)B(-3,0)及原點(diǎn)O.

(1)求拋物線的解析式;

(2)如圖1,過點(diǎn)A作AH⊥x軸,垂足為H,平行于y軸的直線交線段AO于點(diǎn)Q,交拋物線于點(diǎn)P,當(dāng)四邊形AHPQ為平行四邊形時,求∠AOP的度數(shù);

(3)如圖2,若點(diǎn)C在拋物線上,且∠CAO=∠BAO,試探究:在(2)的條件下,是否存在點(diǎn)G,使得△GOP∽△COA?若存在,請求出所有滿足條件的點(diǎn)G坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(y+3)(y-2)=y2+my+n,則m、n的值分別為( )

A. m=5,n=6 B. m=1,n=-6 C. m=1n=6 D. m=5,n=-6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解方程:(1)x2﹣2x﹣2=0;

(2)(x﹣2)2﹣3(x﹣2)=0.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列兩個變量成反比例函數(shù)關(guān)系的是(

①三角形底邊為定值,它的面積S和這條邊上的高線h;

②三角形的面積為定值,它的底邊a與這條邊上的高線h

③面積為定值的矩形的長與寬;

④圓的周長與它的半徑.

A.①④B.①③C.②③D.②④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀材料,解答問題.
例:若代數(shù)式的值是常數(shù)2,則a的取值范圍 2≤a≤4 
分析:原式=|a﹣2|+|a﹣4|,而|a|表示數(shù)x在數(shù)軸上的點(diǎn)到原點(diǎn)的距離,|a﹣2|表示數(shù)a在數(shù)軸上的點(diǎn)到數(shù)2的點(diǎn)的距離,所以我們可以借助數(shù)軸進(jìn)行分析.

解:原式=|a﹣2|+|a﹣4|
在數(shù)軸上看,討論a在數(shù)2表示的點(diǎn)左邊;在數(shù)2表示的點(diǎn)和數(shù)4表示的點(diǎn)之間還是在數(shù)4表示的點(diǎn)右邊,分析可得a的范圍應(yīng)是2≤a≤4.
(1)此例題的解答過程了用了哪些數(shù)學(xué)思想?請列舉.
(2)化簡

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】定義計算“☆”,對于兩個有理數(shù)a,b,有a☆b=a+b﹣ab,例如:﹣3☆2=5.則(﹣2☆3)☆0=

查看答案和解析>>

同步練習(xí)冊答案