【題目】二次函數(shù)的圖象如圖所示,對(duì)稱軸是直線,下列結(jié)論:①;②;③;④;⑤方程有一正一負(fù)兩個(gè)實(shí)數(shù)解.其中結(jié)論正確的個(gè)數(shù)為(

A. 1個(gè)B. 2個(gè)C. 3個(gè)D. 4個(gè)

【答案】D

【解析】

①由拋物線開口方向得到a0,對(duì)稱軸在y軸右側(cè),得到ab異號(hào),又拋物線與y軸正半軸相交,得到c0,可得出abc0,選項(xiàng)①錯(cuò)誤;

②把b2a代入abc0中得3ac0,所以②正確;

③由x1時(shí)對(duì)應(yīng)的函數(shù)值y0,可得出abc0,得到acb,x1時(shí),y0,可得出abc0,得到|ac||b|,即可得到(ac2b20,選項(xiàng)③正確;

④由對(duì)稱軸為直線x1,即x1時(shí),y有最小值,可得結(jié)論,即可得到④正確.

y2=,y21,根據(jù)函數(shù)圖像可得交點(diǎn)的橫坐標(biāo)為一正一負(fù),故可判斷⑤.

解:①∵拋物線開口向上,∴a0

∵拋物線的對(duì)稱軸在y軸右側(cè),∴b0

∵拋物線與y軸交于負(fù)半軸,

c0

abc0,①錯(cuò)誤;

②當(dāng)x1時(shí),y0,∴abc0,

1,∴b2a

b2a代入abc0中得3ac0,所以②正確;

③當(dāng)x1時(shí),y0,∴abc0,

acb

當(dāng)x1時(shí),y0,∴abc0

acb,

|ac||b|

∴(ac2b2,所以③正確;

④∵拋物線的對(duì)稱軸為直線x1,

x1時(shí),函數(shù)的最小值為abc,

,∴-m0,

由圖像可知,當(dāng)x=-m時(shí),yabc

,④正確.

y2=,y21,根據(jù)函數(shù)圖像可得交點(diǎn)的橫坐標(biāo)為一正一負(fù),故方程有一正一負(fù)兩個(gè)實(shí)數(shù)解,正確.

故選:D

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】圖(1)所示矩形中,,滿足的反比例函數(shù)關(guān)系如圖(2)所示,等腰直角三角形的斜邊過點(diǎn),的中點(diǎn),則下列結(jié)論正確的是(

A. 當(dāng)時(shí),

B. 當(dāng)時(shí),

C. 當(dāng)增大時(shí),的值增大

D. 當(dāng)增大時(shí),的值不變

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,點(diǎn)、點(diǎn)在直線上,反比例函數(shù))的圖象經(jīng)過點(diǎn)

1)求的值;

2)將線段向右平移個(gè)單位長(zhǎng)度(),得到對(duì)應(yīng)線段,連接

①如圖2,當(dāng)時(shí),過軸于點(diǎn),交反比例函數(shù)圖象于點(diǎn),求的值;

②在線段運(yùn)動(dòng)過程中,連接,若是以為腰的等腰三形,求所有滿足條件的的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中, AB=AC=10,線段BC軸上,BC=12,點(diǎn)B的坐標(biāo)為(-3,0),線段AB軸于點(diǎn)E,過AADBCD,動(dòng)點(diǎn)P從原點(diǎn)出發(fā),以每秒3個(gè)單位的速度沿軸向右運(yùn)動(dòng),設(shè)運(yùn)動(dòng)的時(shí)間為秒.

1)當(dāng)BPE是等腰三角形時(shí),求的值;

2)若點(diǎn)P運(yùn)動(dòng)的同時(shí),ABCB為位似中心向右放大,且點(diǎn)C向右運(yùn)動(dòng)的速度為每秒2個(gè)單位,ABC放大的同時(shí)高AD也隨之放大,當(dāng)以EP為直徑的圓與動(dòng)線段AD所在直線相切時(shí),求的值和此時(shí)點(diǎn)C的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,,以為直徑的與邊,分別交于兩點(diǎn),過點(diǎn)于點(diǎn)

1)判斷的位置關(guān)系,并說明理由;

2)求證:的中點(diǎn);

3)若,求的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】通過對(duì)一次函數(shù)和反比例函數(shù)的學(xué)習(xí),我們積累了一些研究函數(shù)的經(jīng)驗(yàn),借鑒這些經(jīng)驗(yàn),我們來探索函數(shù)的圖像與性質(zhì).

1)填寫表格,并畫出函數(shù)的圖像:

2)觀察圖像,下列結(jié)論中,正確的有 (填寫所有正確結(jié)論的序號(hào)).

①圖象在第一、三象限;②圖象在第一、二象限;③圖象關(guān)于軸對(duì)稱;④圖象關(guān)于軸對(duì)稱;⑤當(dāng)時(shí),增大而增大.

3)結(jié)合圖像,直接寫出方程的解的個(gè)數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商店經(jīng)銷一種銷售成本為每千克40元的水產(chǎn)品,據(jù)市場(chǎng)分析,若每千克50元銷售,一個(gè)月能售出500kg,銷售單價(jià)每漲1元,月銷售量就減少10kg.

1)當(dāng)銷售單價(jià)定為每千克55元時(shí),計(jì)算銷售量和月銷售利潤(rùn).

2)商品想在月銷售成本不超過10000元的情況下,使得月銷售利潤(rùn)達(dá)到8000元,銷售單價(jià)應(yīng)為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我國(guó)南宋著名數(shù)學(xué)家秦九韶在他的著作《數(shù)書九章》中提出了三斜求積術(shù),三斜即指三角形的三條邊長(zhǎng),可以用該方法求三角形面積.若改用現(xiàn)代數(shù)學(xué)語言表示,其形式為:設(shè)為三角形三邊,為面積,則,這是中國(guó)古代數(shù)學(xué)的瑰寶之一.而在文明古國(guó)古希臘,也有一個(gè)數(shù)學(xué)家海倫給出了求三角形面積的另一個(gè)公式,若設(shè)(周長(zhǎng)的一半),則

1)嘗試驗(yàn)證.這兩個(gè)公式在表面上形式很不一致,請(qǐng)你用以為三邊構(gòu)成的三角形,分別驗(yàn)證它們的面積值;

2)問題探究.經(jīng)過驗(yàn)證,你發(fā)現(xiàn)公式①和②等價(jià)嗎?若等價(jià),請(qǐng)給出一個(gè)一般性推導(dǎo)過程(可以從或者);

3)問題引申.三角形的面積是數(shù)學(xué)中非常重要的一個(gè)幾何度量值,很多數(shù)學(xué)家給出了不同形式的計(jì)算公式.請(qǐng)你證明如下這個(gè)公式:如圖,的內(nèi)切圓半徑為,三角形三邊長(zhǎng)為,仍記,為三角形面積,則

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線m:y=ax2+b(a<0,b>0)與x軸于點(diǎn)A、B(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C.將拋物線m繞點(diǎn)B旋轉(zhuǎn)180°,得到新的拋物線n,它的頂點(diǎn)為C1,與x軸的另一個(gè)交點(diǎn)為A1.若四邊形AC1A1C為矩形,則a,b應(yīng)滿足的關(guān)系式為( 。

A. ab=﹣2 B. ab=﹣3 C. ab=﹣4 D. ab=﹣5

查看答案和解析>>

同步練習(xí)冊(cè)答案