【題目】如圖,已知拋物線y=﹣x2+mx+3與x軸交于點(diǎn)A、B兩點(diǎn),與y軸交于C點(diǎn),點(diǎn)B的坐標(biāo)為(3,0),拋物線與直線y=﹣ x+3交于C、D兩點(diǎn).連接BD、AD.
(1)求m的值.
(2)拋物線上有一點(diǎn)P,滿足S△ABP=4S△ABD , 求點(diǎn)P的坐標(biāo).
【答案】
(1)解:∵拋物線y=﹣x2+mx+3過(3,0),
∴0=﹣9+3m+3,
∴m=2
(2)解:由 ,得 , ,
∴D( ,﹣ ),
∵S△ABP=4S△ABD,
∴ AB×|yP|=4× AB× ,
∴|yP|=9,yP=±9,
當(dāng)y=9時(shí),﹣x2+2x+3=9,無實(shí)數(shù)解,
當(dāng)y=﹣9時(shí),﹣x2+2x+3=﹣9,x1=1+ ,x2=1﹣ ,
∴P(1+ ,﹣9)或P(1﹣ ,﹣9).
【解析】(1)利用待定系數(shù)法即可解決問題;(2)利用方程組首先求出點(diǎn)D坐標(biāo).由面積關(guān)系,推出點(diǎn)P的縱坐標(biāo),再利用待定系數(shù)法求出點(diǎn)P的坐標(biāo)即可;
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解拋物線與坐標(biāo)軸的交點(diǎn)的相關(guān)知識(shí),掌握一元二次方程的解是其對(duì)應(yīng)的二次函數(shù)的圖像與x軸的交點(diǎn)坐標(biāo).因此一元二次方程中的b2-4ac,在二次函數(shù)中表示圖像與x軸是否有交點(diǎn).當(dāng)b2-4ac>0時(shí),圖像與x軸有兩個(gè)交點(diǎn);當(dāng)b2-4ac=0時(shí),圖像與x軸有一個(gè)交點(diǎn);當(dāng)b2-4ac<0時(shí),圖像與x軸沒有交點(diǎn).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠AOB的邊OB與x軸正半軸重合,點(diǎn)P是OA上的一動(dòng)點(diǎn),點(diǎn)N(3,0)是OB上的一定點(diǎn),點(diǎn)M是ON的中點(diǎn),∠AOB=30°,要使PM+PN最小,則點(diǎn)P的坐標(biāo)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,拋物線y=ax2+bx+c與y軸交于點(diǎn)C,其頂點(diǎn)記為M,自變量x=﹣1和x=5對(duì)應(yīng)的函數(shù)值相等.若點(diǎn)M在直線l:y=﹣12x+16上,點(diǎn)(3,﹣4)在拋物線上.
(1)求該拋物線的解析式;
(2)設(shè)y=ax2+bx+c對(duì)稱軸右側(cè)x軸上方的圖象上任一點(diǎn)為P,在x軸上有一點(diǎn)A(﹣ ,0),試比較銳角∠PCO與∠ACO的大。ú槐刈C明),并寫出相應(yīng)的P點(diǎn)橫坐標(biāo)x的取值范圍.
(3)直線l與拋物線另一交點(diǎn)記為B,Q為線段BM上一動(dòng)點(diǎn)(點(diǎn)Q不與M重合),設(shè)Q點(diǎn)坐標(biāo)為(t,n),過Q作QH⊥x軸于點(diǎn)H,將以點(diǎn)Q,H,O,C為頂點(diǎn)的四邊形的面積S表示為t的函數(shù),標(biāo)出自變量t的取值范圍,并求出S可能取得的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校為了解學(xué)生每天參加戶外活動(dòng)的情況,隨機(jī)抽查了100名學(xué)生每天參加戶外活動(dòng)的時(shí)間情況,并將抽查結(jié)果繪制成如圖所示的扇形統(tǒng)計(jì)圖.
請(qǐng)你根據(jù)圖中提供的信息解答下列問題:
(1)請(qǐng)直接寫出圖a的值,并求出本次抽查中學(xué)生每天參加戶外活動(dòng)時(shí)間的中位數(shù);
(2)求本次抽查中學(xué)生每天參加戶外活動(dòng)的平均時(shí)間.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平行四邊形ABCD中,∠A的平分線把BC邊分成長(zhǎng)度是3和4的兩部分,則平行四邊形ABCD周長(zhǎng)是( )
A.22
B.20
C.22或20
D.18
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形AOCB的頂點(diǎn)A、C分別位于x軸和y軸的正半軸上,線段OA、OC的長(zhǎng)度滿足方程|x﹣15|+ =0(OA>OC),直線y=kx+b分別與x軸、y軸交于M、N兩點(diǎn),將△BCN沿直線BN折疊,點(diǎn)C恰好落在直線MN上的點(diǎn)D處,且tan∠CBD=
(1)求點(diǎn)B的坐標(biāo);
(2)求直線BN的解析式;
(3)將直線BN以每秒1個(gè)單位長(zhǎng)度的速度沿y軸向下平移,求直線BN掃過矩形AOCB的面積S關(guān)于運(yùn)動(dòng)的時(shí)間t(0<t≤13)的函數(shù)關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a,b,c為常數(shù),且a≠0)中的x與y的部分對(duì)應(yīng)值如表
x | ﹣1 | 0 | 1 | 3 |
y | ﹣1 | 3 | 5 | 3 |
下列結(jié)論:①ac<0;②當(dāng)x>1時(shí),y的值隨x值的增大而減。
③當(dāng)x=2時(shí),y=5;④3是方程ax2+(b﹣1)x+c=0的一個(gè)根;
其中正確的有 . (填正確結(jié)論的序號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】以坐標(biāo)原點(diǎn)O為圓心,作半徑為2的圓,若直線y=﹣x+b與⊙O相交,則b的取值范圍是( )
A.0≤b<2
B.﹣2
C.﹣2 2
D.﹣2 <b<2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,四邊形ABCD中,AD∥BC,AD=CD,E是對(duì)角線BD上一點(diǎn),且EA=EC.
(1)求證:四邊形ABCD是菱形;
(2)如果BE=BC,且∠CBE:∠BCE=2:3,求證:四邊形ABCD是正方形.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com