【題目】如圖所示,矩形ABCD中,AE平分∠BAD交BC于E,∠CAE=15°,則下面的結(jié)論: ①△ODC是等邊三角形;②BC=2AB;③∠AOE=135°;④SAOE=SCOE ,
其中正確結(jié)論有(

A.1個
B.2個
C.3個
D.4個

【答案】C
【解析】解:∵四邊形ABCD是矩形, ∴∠BAD=90°,OA=OC,OD=OB,AC=BD,
∴OA=OD=OC=OB,
∵AE平分∠BAD,
∴∠DAE=45°,
∵∠CAE=15°,
∴∠DAC=30°,
∵OA=OD,
∴∠ODA=∠DAC=30°,
∴∠DOC=60°,
∵OD=OC,
∴△ODC是等邊三角形,∴①正確;
∵四邊形ABCD是矩形,
∴AD∥BC,∠ABC=90°
∴∠DAC=∠ACB=30°,
∴AC=2AB,
∵AC>BC,
∴2AB>BC,∴②錯誤;
∵AD∥BC,
∴∠DBC=∠ADB=30°,
∵AE平分∠DAB,∠DAB=90°,
∴∠DAE=∠BAE=45°,
∵AD∥BC,
∴∠DAE=∠AEB,
∴∠AEB=∠BAE,
∴AB=BE,
∵四邊形ABCD是矩形,
∴∠DOC=60°,DC=AB,
∵△DOC是等邊三角形,
∴DC=OD,
∴BE=BO,
∴∠BOE=∠BEO= (180°﹣∠OBE)=75°,
∵∠AOB=∠DOC=60°,
∴∠AOE=60°+75°=135°,∴③正確;
∵OA=OC,
∴根據(jù)等底等高的三角形面積相等得出SAOE=SCOE , ∴④正確;
故選C.

根據(jù)矩形性質(zhì)求出OD=OC,根據(jù)角求出∠DOC=60°即可得出三角形DOC是等邊三角形,求出AC=2AB,即可判斷②,求出∠BOE=75°,∠AOB=60°,相加即可求出∠AOE,根據(jù)等底等高的三角形面積相等得出SAOE=SCOE

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,AB=6,AD=8,∠BAD的平分線交BC于點E,交DC的延長線于點F,BG⊥AE于G,BG=4 ,則四邊形AECD的周長為(
A.20
B.21
C.22
D.23

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在四邊形ABCD中,AB∥CD,∠BCD=90°,AB=AD=10cm,BC=8cm,點P從點A出發(fā),沿折線ABCD方向以3cm/s的速度勻速運動;點Q從點D出發(fā),沿線段DC方向以2cm/s的速度勻速運動.已知兩點同時出發(fā),當一個點到達終點時,另一點也停止運動,設(shè)運動時間為t(s).
(1)求CD的長;
(2)當四邊形PBQD為平行四邊形時,求四邊形PBQD的周長;
(3)在點P、Q的運動過程中,是否存在某一時刻,使得△BPQ的面積為20cm2?若存在,請求出所有滿足條件的t的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在5×5的正方形網(wǎng)格中,每個小正方形的邊長都是1,在所給網(wǎng)格中按下列要求畫出圖形:
(1)(I)已知點A在格點(即小正方形的頂點)上,畫一條線段AB,長度為 ,且點B在格點上; (II)以上題中所畫線段AB為一邊,另外兩條邊長分別是3,2 ,畫一個三角形ABC,使點C在格點上(只需畫出符合條件的一個三角形);
(2)所畫的三角形ABC的AB邊上高線長為(直接寫出答案)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線y=ax2的開口向下,且|a|=3,則a=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖(1),在矩形ABCD中,AB=4,BC=6,P是AD的中點,N是BC延長線上一點,連結(jié)PN,過點P作PN的垂線,交AB于點E,交CD的延長線于點F,連結(jié)EN,F(xiàn)N,設(shè)CN=x,AE=y.

(1)求證:PE=PF;
(2)當0<x< 時,求y關(guān)于x的函數(shù)表達式;
(3)若將“矩形ABCD”變?yōu)椤傲庑蜛BCD”,如圖(2),AB=BC=4,∠B=60°,當0<x<3時,其它條件不變,求此時y關(guān)于x的函數(shù)表達式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知不論x為何值,x2-kx-15=(x+5)(x-3),則k值為( )

A. 2 B. -2 C. 5 D. -3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】輪船沿江從A港順流行駛到B港,比從B港返回A港少用3小時,若船速為26千米/時,水速為2千米/時,求A港和B港相距多少千米.設(shè)A港和B港相距x千米.根據(jù)題意,可列出的方程是( )
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知某鐵路橋長500m,現(xiàn)在一列火車勻速通過該橋,火車從開始上橋到過完橋共用了30s,整列火車完全在橋上的時間為20s,則火車的長度為多少m?

查看答案和解析>>

同步練習(xí)冊答案