【題目】已知,ABC中,∠ACB90°,ACBC,點EBC上一點,連接AE

1)如圖1,當AE平分∠BAC時,EHABHEHB的周長為10m,求AB的長;

2)如圖2,延長BCD,使DCBC,將線段AE繞點A順時針旋轉(zhuǎn)90°得線段AF,連接DF,過點BBGBC,交FC的延長線于點G,求證:BGBE

【答案】1AB10m;(2)見解析.

【解析】

1)根據(jù)等腰三角形的性質(zhì)得到∠B=45°,根據(jù)角平分線的性質(zhì)得到CE=EH=BH,根據(jù)全等三角形的性質(zhì)得到AH=AC,于是得到結(jié)論;

2)先連接AD,依據(jù)AAS判定△ADF≌△ABE,得到DF=BE,再判定△BCG≌△DCF,得出DF=BG,進而得到BG=BE

解:(1∵∠ACB90°,ACBC

∴∠B45°,

∵AE平分∠BAC時,EH⊥ABH

∴CEEHBH,

Rt△ACERt△AHE中,

,

∴Rt△ACERt△AHEHL),

∴AHAC

∴AHBC,

∵△EHB的周長為10m,

∴ABAH+BHBC+BH10m

2)如圖所示,連接AD

線段AE繞點A順時針旋轉(zhuǎn)90°得線段AF,則AEAF,∠EAF90°,

∵AC⊥BD,DCBC,

∴ADAB,∠ABE∠ADC45°,

∴∠BAD90°∠EAF,

∴∠BAE∠DAF

∴△ABE≌△ADFSAS),

∴DFBE,∠ADF∠ABE45°

∴∠FDC90°,

∵BG⊥BC,

∴∠CBG∠CDF90°

∵BCDC,∠BCG∠DCF

∴△BCG≌△DCFASA),

∴DFBG,

∴BGBE

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,的正北方向,的正東方向,且.某一時刻,甲車從出發(fā),以的速度朝正東方向行駛,與此同時,乙車從出發(fā),以的速度朝正北方向行駛.小時后,位于點處的觀察員發(fā)現(xiàn)甲、乙兩車之間的夾角為,即,此時,甲、乙兩人相距的距離為(

A. 90km B. 50 km C. 20 km D. 100km

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,小華剪了兩條寬為1的紙條,交叉疊放在一起,且它們較小的交角為60°,則它們重疊部分的面積為( 。

A. 3 B. 2 C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC 中,點 D,E 分別在∠ABC 和∠ACB 的平分線上,連接 BD,DE,EC,若∠D+E=295° 則∠A 是(

A.65°B.60°C.55°D.50°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形中,是對角線上一點,過點作矩形,其中點上,點上.

的度數(shù);

試說明;

若正方形的面積為,求矩形的周長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形ABCD中,對角線BD的垂直平分線MNAD相交于點M,與BD相交于點O,與BC相交于點N,連接BMDN

求證:四邊形BMDN是菱形;

,求菱形BMDN的面積和對角線MN的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,∠AOB=60°,OA=OB,動點C從點O出發(fā),沿射線OB方向移動,以AC為邊在右側(cè)作等邊ACD,連接BD,則BD所在直線與OA所在直線的位置關(guān)系是( 。

A. 平行 B. 相交 C. 垂直 D. 平行、相交或垂直

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某地要建造一個圓形噴水池,在水池中央垂直于地面安裝一個柱子OA,O恰為水面中心,安置在柱子頂端A處的噴頭向外噴水,水流在各個方向上沿形狀相同的拋物線路徑落下.在過OA的任一平面上,建立平面直角坐標系(如圖),水流噴出的高度y(m)與水平距離x(m)之間的關(guān)系式是,則下列結(jié)論:(1)柱子OA的高度為3m;(2)噴出的水流距柱子1m處達到最大高度;(3)噴出的水流距水平面的最大高度是4m;(4)水池的半徑至少要3m才能使噴出的水流不至于落在池外.其中正確的有(

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,某同學把一塊三角形的玻璃打碎成了三塊,現(xiàn)在要到玻璃店去配一塊完全一樣的玻璃,那么最省事的辦法是(

A.帶①去B.帶②去C.帶③去D.帶①和②去

查看答案和解析>>

同步練習冊答案