【題目】
(1)解方程: =0;
(2)解不等式:2+ ≤x,并將它的解集在數(shù)軸上表示出來.

【答案】
(1)解:去分母得:3x+6﹣2x=0,

移項合并得:x=﹣6,

經(jīng)檢驗x=﹣6是分式方程的解;


(2)解:去分母得:6+2x﹣1≤3x,

解得:x≥5,

解集在數(shù)軸上表示出來為:


【解析】(1)分式方程去分母轉(zhuǎn)化為整式方程,求出整式方程的解得到x的值,經(jīng)檢驗即可得到分式方程的解;(2)不等式去分母,去括號,移項合并,將x系數(shù)化為1,求出解集,表示在數(shù)軸上即可.
【考點精析】本題主要考查了去分母法和不等式的解集在數(shù)軸上的表示的相關(guān)知識點,需要掌握先約后乘公分母,整式方程轉(zhuǎn)化出.特殊情況可換元,去掉分母是出路.求得解后要驗根,原留增舍別含糊;不等式的解集可以在數(shù)軸上表示,分三步進行:①畫數(shù)軸②定界點③定方向.規(guī)律:用數(shù)軸表示不等式的解集,應記住下面的規(guī)律:大于向右畫,小于向左畫,等于用實心圓點,不等于用空心圓圈才能正確解答此題.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,一次函數(shù)y=kx﹣3(k≠0)的圖象與y軸交于點A,與反比例函數(shù)y= (x>0)的圖象交于點B(4,b).

(1)b=;k=;
(2)點C是線段AB上的動點(與點A、B不重合),過點C且平行于y軸的直線l交這個反比例函數(shù)的圖象于點D,求△OCD面積的最大值;
(3)將(2)中面積取得最大值的△OCD沿射線AB方向平移一定的距離,得到△O′C′D′,若點O的對應點O′落在該反比例函數(shù)圖象上(如圖2),則點D′的坐標是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知正方形ABCD,P為射線AB上的一點,以BP為邊作正方形BPEF,使點F在線段CB的延長線上,連接EA、EC.

(1)如圖1,若點P在線段AB的延長線上,求證:EA=EC;
(2)若點P在線段AB上.
①如圖2,連接AC,當P為AB的中點時,判斷△ACE的形狀,并說明理由;
②如圖3,設(shè)AB=a,BP=b,當EP平分∠AEC時,求a:b及∠AEC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】解方程和不等式組:
(1) + =1
(2)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,一次函數(shù)y=x與二次函數(shù)y=x2+bx的圖象相交于O、A兩點,點A(3,3),點M為拋物線的頂點.

(1)求二次函數(shù)的表達式;
(2)長度為2 的線段PQ在線段OA(不包括端點)上滑動,分別過點P、Q作x軸的垂線交拋物線于點P1、Q1 , 求四邊形PQQ1P1面積的最大值;
(3)直線OA上是否存在點E,使得點E關(guān)于直線MA的對稱點F滿足SAOF=SAOM?若存在,求出點E的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,小明從點A處出發(fā),沿著坡角為α的斜坡向上走了0.65千米到達點B,sinα= ,然后又沿著坡度為i=1:4的斜坡向上走了1千米達到點C.問小明從A點到點C上升的高度CD是多少千米(結(jié)果保留根號)?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=ax2+bx+c(a>0)的對稱軸是過點(1,0)且平行于y軸的直線,若點P(4,0)在該拋物線上,則4a﹣2b+c的值為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB為⊙O的直徑,PD切⊙O于點C,交AB的延長線于點D,且∠D=2∠CAD.
(1)求∠D的度數(shù);
(2)若CD=2,求BD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,A、B、C、D依次為一直線上4個點,BC=2,△BCE為等邊三角形,⊙O過A、D、E3點,且∠AOD=120°.設(shè)AB=x,CD=y,則y與x的函數(shù)關(guān)系式為

查看答案和解析>>

同步練習冊答案