精英家教網(wǎng)如圖,BC是⊙O的直徑,A是弦BD延長(zhǎng)線上一點(diǎn),切線DE平分AC于E.
(1)求證:AC是⊙O的切線;
(2)若AD:DB=3:2,AC=15,求⊙O的直徑.
分析:(1)要證AC是⊙O的切線,只要證∠BCA=90°即可;
(2)切割線定理得出關(guān)于AD,AB的比例式,求出AB的長(zhǎng),再用勾股定理求出求⊙O的直徑.
解答:精英家教網(wǎng)(1)證明:連接OD,CD;
∵切線DE平分AC于E,
∴∠ODE=90°,
∵BC是⊙O的直徑,
∴在Rt△ADC中DE=CE;
∵OE=OE,OD=OC,
∴△ODE≌△OCE,
∴∠ACB=90°,
∴AC是⊙O的切線.

(2)解:∵AC是⊙O的切線;
∴AC•AC=AD•AB=AD•(AD+BD)AD:DB=3:2,
∴AD=3
15
,AB=5
15
,
∴BC=5
6
點(diǎn)評(píng):本題考查了切線的判定,切割線定理和勾股定理的綜合運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

8、如圖,AB是鉛直地豎立在坡角為30°的山坡上的電線桿,當(dāng)陽(yáng)光與水平線成60°角時(shí),電線桿的影子BC的長(zhǎng)度為4米,則電線桿AB的高度為(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,這是交警部門為緩解哈市區(qū)內(nèi)交通擁擠在西大直街某處設(shè)立的路況顯示牌.立桿AB高度是1米,從D點(diǎn)測(cè)得顯示牌頂端C和底端B的仰角分別是60°和45°,則BC的長(zhǎng)為
3
-1)
3
-1)
米(結(jié)果保留根號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,某水庫(kù)堤壩的橫斷面為梯形,背水坡AD的坡比(坡比是斜坡的鉛直距離與水平距離的比)為1:1.5,迎水坡BC的坡比為1:
3
,壩頂寬CD為3m,壩高CF為10m,則壩底寬AB約為( 。
3
≈1.732,保留3個(gè)有效數(shù)字)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

某市的跨江斜拉大橋建成通車,如圖,BC是水平橋面,AD是豎直橋墩,按工程設(shè)計(jì)的要求,斜拉的鋼線AB、AC應(yīng)相等,請(qǐng)你用學(xué)過的知識(shí)來(lái)檢驗(yàn)AB、AC的長(zhǎng)度是相等的,寫出你的檢驗(yàn)方法步驟,并簡(jiǎn)要說明理由.(檢驗(yàn)工具為刻度尺、測(cè)角儀;檢驗(yàn)時(shí),人只能站在橋面上)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

某市的跨江斜拉大橋建成通車,如圖,BC是水平橋面,AD是豎直橋墩,按工程設(shè)計(jì)的要求,斜拉的鋼線AB、AC應(yīng)相等,請(qǐng)你用學(xué)過的知識(shí)來(lái)檢驗(yàn)AB、AC的長(zhǎng)度是相等的,寫出你的檢驗(yàn)方法步驟,并簡(jiǎn)要說明理由.(檢驗(yàn)工具為刻度尺、測(cè)角儀;檢驗(yàn)時(shí),人只能站在橋面上)

查看答案和解析>>

同步練習(xí)冊(cè)答案