【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A坐標(biāo)(0,6),AC⊥y軸,且AC=AO,點(diǎn)B,C橫坐標(biāo)相同,點(diǎn)D在AC上,tan∠AOD=,若反比例函數(shù)y=(x>0)的圖象經(jīng)過點(diǎn)B、D.
(1)求:k及點(diǎn)B坐標(biāo);
(2)將△AOD沿著OD折疊,設(shè)頂點(diǎn)A的對(duì)稱點(diǎn)A1的坐標(biāo)是A1(m,n),求:代數(shù)式m+3n的值以及點(diǎn)A1的坐標(biāo).
【答案】(1)(6,2);(2)(3.6,4.8)
【解析】
試題(1)先根據(jù)tan∠AOD=,A坐標(biāo)(0,6)得出AD的長(zhǎng),再根據(jù)點(diǎn)D在反比例函數(shù)y=(x>0)的圖象上可求出k的值,由BC∥AO,得出B點(diǎn)坐標(biāo);
(2)過點(diǎn)A1作EF∥OA交AC于E,交x軸于F,連接OA1,根據(jù)AC∥x軸可知∠A1ED=∠A1FO=90°,由相似三角形的判定定理得出△DEA1∽△A1FO,設(shè)A1(m,n),可得出,m2+n2=2m+6n,,再根據(jù)勾股定理可得出m2+n2=36,于是得到結(jié)論.
解:(1)∵點(diǎn)A坐標(biāo)(0,6),tan∠AOD=,
∴AD=2,
∴D(2,6)
∵點(diǎn)D在反比例函數(shù)y=(x>0)的圖象上,
∴6=,解得k=12,
∵AC=AO,點(diǎn)B,C橫坐標(biāo)相同,
∴點(diǎn)B、C的橫坐標(biāo)都是6,
∴BC∥AO,
∴B(6,2);
(2)過點(diǎn)A1作EF∥OA交AC于E,交x軸于F,連接OA1,
∵AC∥x軸,
∴∠A1ED=∠A1FO=90°,
∵∠OA1D=90°,
∴∠A1DE=∠OA1F,
∴△DEA1∽△A1FO,
∵A1(m,n),
∴=,
∴m2+n2=2m+6n,
∵m2+n2=OA12=OA2=36,
∴m+3n=18,
即m=18﹣3n,
∴(18﹣3n)2+n2=36,
解得n1=6(舍去),n2=4.8,
∴m=18﹣3×4.8=3.6,
即點(diǎn)A1的坐標(biāo)為(3.6,4.8).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校計(jì)劃一次性購(gòu)買排球和籃球,每個(gè)籃球的價(jià)格比排球貴30元;購(gòu)買2個(gè)排球和3個(gè)籃球共需340元.
(1)求每個(gè)排球和籃球的價(jià)格:
(2)若該校一次性購(gòu)買排球和籃球共60個(gè),總費(fèi)用不超過3800元,且購(gòu)買排球的個(gè)數(shù)少于39個(gè).設(shè)排球的個(gè)數(shù)為m,總費(fèi)用為y元.
①求y關(guān)于m的函數(shù)關(guān)系式,并求m可取的所有值;
②在學(xué)校按怎樣的方案購(gòu)買時(shí),費(fèi)用最低?最低費(fèi)用為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖1,點(diǎn)O是線段AD的中點(diǎn),分別以AO和DO為邊在線段AD的同側(cè)作等邊三角形OAB和等邊三角形OCD,連接AC和BD,相交于點(diǎn)E,連接BC.求∠AEB的大;
(2)如圖2,△OAB固定不動(dòng),保持△OCD的形狀和大小不變,將△OCD繞點(diǎn)O旋轉(zhuǎn)(△OAB和△OCD不能重疊),求∠AEB的大小.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC,分別以AB,AC為直角邊,向外作等腰直角三角形ABE和等腰直角三角形ACD,∠EAB=∠DAC=90°,連結(jié)BD,CE交于點(diǎn)F,設(shè)AB=m,BC=n.
(1)求證:∠BDA=∠ECA.
(2)若m=,n=3,∠ABC=75°,求BD的長(zhǎng).
(3)當(dāng)∠ABC=____時(shí),BD最大,最大值為____(用含m,n的代數(shù)式表示)
(4)試探究線段BF,AE,EF三者之間的數(shù)量關(guān)系。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知△ABC三個(gè)頂點(diǎn)的坐標(biāo)分別是A(2,2),B(4,0),C(4,﹣4).
(1)請(qǐng)?jiān)趫D中,畫出△ABC向左平移6個(gè)單位長(zhǎng)度后得到的△A1B1C1;
(2)以點(diǎn)O為位似中心,將△ABC縮小為原來的,得到△A2B2C2,請(qǐng)?jiān)趫D中y軸右側(cè),畫出△A2B2C2,并求出∠A2C2B2的正弦值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn) A,B的坐標(biāo)分別為(0,3),(1,0),△ABC是等腰直角三角形,∠ABC=90°.
(1)圖1中,點(diǎn)C的坐標(biāo)為 ;
(2)如圖2,點(diǎn)D的坐標(biāo)為(0,1),點(diǎn)E在射線CD上,過點(diǎn)B 作BF⊥BE交y軸于點(diǎn)F.
①當(dāng)點(diǎn)E為線段CD的中點(diǎn)時(shí),求點(diǎn)F的坐標(biāo);
②當(dāng)點(diǎn)E在第二象限時(shí),請(qǐng)直接寫出F點(diǎn)縱坐標(biāo)y的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=kx+b與反比例函數(shù)y=的圖象在第一象限交于點(diǎn)A(4,3),與y軸的負(fù)半軸交于點(diǎn)B,且OA=OB.
(1)求一次函數(shù)y=kx+b和y=的表達(dá)式;
(2)已知點(diǎn)C在x軸上,且△ABC的面積是8,求此時(shí)點(diǎn)C的坐標(biāo);
(3)反比例函數(shù)y=(1≤x≤4)的圖象記為曲線C1,將C1向右平移3個(gè)單位長(zhǎng)度,得曲線C2,則C1平移至C2處所掃過的面積是_________.(直接寫出答案)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“最美女教師”張麗莉,為搶救兩名學(xué)生,以致雙腿高位截肢,社會(huì)各界紛紛為她捐款,我市某中學(xué)九年級(jí)一班全體同學(xué)參加了捐款活動(dòng),該班同學(xué)捐款情況的部分統(tǒng)計(jì)圖如圖所示:
(1)求該班的總?cè)藬?shù);
(2)將條形圖補(bǔ)充完整,并寫出捐款總額的眾數(shù);
(3)該班平均每人捐款多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等邊△ABC中,AD是∠BAC的角平分線,E為AD上一點(diǎn),以BE為一邊且在BE下方作等邊△BEF,連接CF.
(1)求證:AE=CF;
(2)求∠ACF的度數(shù).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com