【題目】如圖,CB∥OA,∠B=∠A=100°,E、F在CB上,且滿足∠FOC=∠AOC,OE平分∠BOF.
(1)求∠EOC的度數(shù);
(2)若平行移動AC,那么∠OCB:∠OFB的值是否隨之發(fā)生變化?若變化,試說明理由;若不變,求出這個比值;
(3)在平行移動AC的過程中,是否存在某種情況,使∠OEB=∠OCA?若存在,求出∠OCA度數(shù);若不存在,說明理由.
【答案】(1)40°;(2)不變,=1:2;(3)∠OCA=60°.
【解析】
(1)由于BC∥OA,∠B=100°,易求∠AOB,而OE、OC都是角平分線,從而可求∠COE;
(2)利用BC∥OA,可知∠AOC=∠BCO,又因為∠AOC=∠COF,所以就有∠FCO=∠FOC,即∠BFO=2∠FCO=2∠OCB,那么∠OCB:∠OFB=1:2;
(3)設(shè)∠OCA=α,∠AOC=x,根據(jù)三角形的外角性質(zhì)、三角形的內(nèi)角和定理、平行線的性質(zhì)可得,α+x=80°,40°+x=α,解即可.
解:(1)∵CB∥OA,
∴∠BOA+∠B=180°,
∴∠BOA=80°,
∵∠FOC=∠AOC,OE平分∠BOF,
∴∠EOC=∠EOF+∠FOC=∠BOF+∠FOA=(∠BOF+∠FOA)=×80°=40°;
(2)不變.
∵CB∥OA,
∴∠OCB=∠COA,∠OFB=∠FOA,
∵∠FOC=∠AOC,
∴∠COA=∠FOA,即∠OCB:∠OFB=1:2.
(3)在平行移動AC的過程中,存在∠OEB=∠OCA,且∠OCA=60°.
設(shè)∠OCA=α,∠AOC=x,
∵∠OEB=∠COE+∠OCB=40°+x,
∠ACO=80°﹣x,
∴α=80°﹣x,40°+x=α,
∴x=20°,α=60°.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個密閉不透明的盒子里有若干個白球,在不允許將球倒出來數(shù)的情況下,為估計白球數(shù),小剛向其中放入8個黑球搖勻后,從中隨意摸出一個球記下顏色,再把它放回盒中,不斷重復(fù)這一過程,共摸球100次,其中20次摸到黑球,你估計盒中大約有白球( )
A.20個
B.28個
C.36個
D.32個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知多項式(2x2+ax﹣y+6)﹣(2bx2﹣3x+5y﹣1).
(1)若多項式的值與字母x的取值無關(guān),求a、b的值.
(2)在(1)的條件下,先化簡多項式3(a2﹣ab+b2)﹣(3a2+ab+b2),再求它的值.
(3)在(1)的條件下,求(b+a2)+(2b+a2)+(3b+a2)+…+(9b+a2)的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】解答下面的問題:
(1)如果a2+a=3,求a2+a+2015的值.
(2)已知a﹣b=﹣3,求3(b﹣a)2﹣5a+5b+5的值.
(3)已知a2+2ab=﹣3,ab﹣b2=﹣5,求4a2+ab+b2的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場國慶節(jié)搞促銷活動,購物不超過200元不給優(yōu)惠,超過200(不含200元)元而不足500元,所有商品按購物價優(yōu)惠10%,超過500元的,其中500元按9折優(yōu)惠,超過的部分按8折優(yōu)惠,A,B兩個商品價格分別為180元,550元。
(1) 某人第一次購買一件A商品,第二次購買一件B商品,實際共付款多少元?
(2) 若此人一次購物購買A,B商品各一件,則實際付款多少錢?
(3) 國慶期間,某人在該商場兩次購物分別付款180元和550元,如果他合起來一次性購買同樣的商品,還可節(jié)約多少錢?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC中,AB=AC,D為△ABC所在平面內(nèi)的一點,過D作DE∥AB,DF∥AC分別交直線AC,直線AB于點E,F.
(1)如圖1,當(dāng)點D在線段BC上時,通過觀察分析線段DE、DF、AB之間的數(shù)量關(guān)系,并說明理由;
(2)如圖2,當(dāng)點D在直線BC上,其他條件不變時,試猜想線段DE、DF、AB之間的數(shù)量關(guān)系(請直接寫出等式,不需證明);
(3)如圖3,當(dāng)點D是△ABC內(nèi)一點,過D作DE∥AB,DF∥AC分別交直線AC,直線AB和直線BC于E、F和G. 試猜想線段DE、DF、DG與AB之間的數(shù)量關(guān)系(請直接寫出等式,不需證明).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將矩形ABCD沿對角線AC翻折,點B落在點F處,FC交AD于E.
(1)求證:△AFE≌△CDF;
(2)若AB=4,BC=8,求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=kx+b(k≠0)的圖象與x軸的交點坐標(biāo)為(-2,0),則下列說法:①y隨x的增大而減。虎陉P(guān)于x的方程kx+b=0的解為x=-2;③kx+b>0的解集是x>-2;④b<0.其中正確的有__________.(填序號)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com