將拋物線y=+3向右平移2個單位后,得到的新拋物線解析式是    
y=+3

試題分析:拋物線的平移規(guī)律:左加右減,上加下減.
將拋物線y=+3向右平移2個單位后,得到的新拋物線解析式是y=+3.
點評:本題屬于基礎應用題,只需學生熟練掌握拋物線的平移規(guī)律,即可完成.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

已知拋物線經過點().
(1)求的值;
(2)若此拋物線的頂點為(,),用含的式子分別表示,并求之間的函數(shù)關系式;
(3)若一次函數(shù),且對于任意的實數(shù),都有,直接寫出的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

(10分) 如圖,已知拋物線y = ax2-x + c經過點Q(-2,),且它的頂點P的橫坐標為-1.設拋物線與x軸相交于A、B兩點。

(1)求拋物線的解析式及頂點P的坐標;
(2)求A、B兩點的坐標;并求當x為何值時,y>0?
(3)設PB交y軸于C點,求線段PC的長。

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

某汽車在剎車后行駛的距離s(單位:m)與時間t(單位:s)之間的關系得部分數(shù)據(jù)如下表:
時間t(s)
0
0.2
0.4
0.6
0.8
1.0
1.2

行駛距離s(m)
0
2.8
5.2
7.2
8.8
10
10.8

假設這種變化規(guī)律一直延續(xù)到汽車停止.
(1)根據(jù)這些數(shù)據(jù)在給出的坐標系中畫出相應的點;

(2)選擇適當?shù)暮瘮?shù)表示s與t之間的關系,求出相應的函數(shù)解析式;
(3)剎車后汽車行駛了多長距離才停止?

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知:直線y=-2x-2與x軸交于點A,與y軸交于點C,拋物線經過點A、C、E,且點E(6,7)

(1)求拋物線的解析式.
(2)在直線AE的下方的拋物線取一點M使得構成的三角形AME的面積最大,請求出M點的坐標及△AME的最大面積.
(3)若拋物線與x軸另一交點為B點,點P在x軸上,點D(1,-3),以點P、B、D為頂點的三角形與△AEB相似,求點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知二次函數(shù)的圖象過點(-1,15),
求m的值;
若二次函數(shù)圖象上有一點C,圖象與x軸交于A、B兩點,且=3,求點C的坐標。

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖是二次函數(shù)y=ax2+bx+c (a¹0)在平面直角坐標系中的圖象,根據(jù)圖形判斷 ①>0;②++<0;③2-<0;④2+8a>4ac中,正確的是(填寫序號)     

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖1,在Rt△ABC中,∠C=90°,BC=8厘米,點D在AC上,CD=3厘米.點P、Q分別由A、C兩點同時出發(fā),點P沿AC方向向點C勻速移動,速度為每秒k厘米,行完AC全程用時8秒;點Q沿CB方向向點B勻速移動,速度為每秒1厘米.設運動的時間為x秒,△DCQ的面積為y1平方厘米,△PCQ的面積為y2平方厘米.

(1)求y1與x的函數(shù)關系,并在圖2中畫出y1的圖象;
(2)如圖2,y2的圖象是拋物線的一部分,其頂點坐標是(4,12),求點P的速度及AC的長;
(3)在圖2中,點G是x軸正半軸上一點(0<OG<6),過G作EF垂直于x軸,分別交y1、y2于點E、F.
①說出線段EF的長在圖1中所表示的實際意義;
②當0<x<6時,求線段EF長的最大值.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

(本題8分)若是二次函數(shù),求m的值

查看答案和解析>>

同步練習冊答案