【題目】如圖,⊙O的直徑AB=4,∠ABC=30°,BC交⊙O于D,D是BC的中點(diǎn).
(1)求BC的長;
(2)過點(diǎn)D作DE⊥AC,垂足為E,求證:直線DE是⊙O的切線.
【答案】
(1)解:連接AD,
∵AB是⊙O的直徑,
∴∠ADB=90°,
又∵∠ABC=30°,AB=4,
∴BD=2 ,
∵D是BC的中點(diǎn),
∴BC=2BD=4
(2)證明:連接OD.
∵D是BC的中點(diǎn),O是AB的中點(diǎn),
∴DO是△ABC的中位線,
∴OD∥AC,則∠EDO=∠CED
又∵DE⊥AC,
∴∠CED=90°,∠EDO=∠CED=90°
∴DE是⊙O的切線.
【解析】(1)根據(jù)圓周角定理求得∠ADB=90°,然后解直角三角形即可求得BD,進(jìn)而求得BC即可;(2)要證明直線DE是⊙O的切線只要證明∠EDO=90°即可.
【考點(diǎn)精析】通過靈活運(yùn)用含30度角的直角三角形和圓周角定理,掌握在直角三角形中,如果一個銳角等于30°,那么它所對的直角邊等于斜邊的一半;頂點(diǎn)在圓心上的角叫做圓心角;頂點(diǎn)在圓周上,且它的兩邊分別與圓有另一個交點(diǎn)的角叫做圓周角;一條弧所對的圓周角等于它所對的圓心角的一半即可以解答此題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在軍事上,常用時鐘表示方向角(讀數(shù)對應(yīng)的時針方向),如正北為12點(diǎn)方向,北偏西30°為11點(diǎn)方向.在一次反恐演習(xí)中,甲隊(duì)員在A處掩護(hù),乙隊(duì)員從A處沿12點(diǎn)方向以40米/分的速度前進(jìn),2分鐘后到達(dá)B處.這時,甲隊(duì)員發(fā)現(xiàn)在自己的1點(diǎn)方向的C處有恐怖分子,乙隊(duì)員發(fā)現(xiàn)C處位于自己的2點(diǎn)方向(如圖).假設(shè)距恐怖分子100米以外為安全位置.
(1)乙隊(duì)員是否處于安全位置?為什么?
(2)因情況不明,甲隊(duì)員立即發(fā)出指令,要求乙隊(duì)員沿原路后撤,務(wù)必于15秒內(nèi)到達(dá)安全位置.為此,乙隊(duì)員至少應(yīng)用多快的速度撤離?(結(jié)果精確到個位.參考數(shù)據(jù): ,.)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下面材料:
在學(xué)習(xí)《圓》這一章時,老師給同學(xué)們布置了一道尺規(guī)作圖題:
尺規(guī)作圖:過圓外一點(diǎn)作圖的切線。
已知:P為圓O外一點(diǎn)。
求作:經(jīng)過點(diǎn)P的圓O的切線。
小敏的作法如下:
①連接OP,作線段OP的垂直平分線MN交OP于點(diǎn)C;
②以點(diǎn)C為圓心,CO的長為半徑作圓交圓O于A、B兩點(diǎn);
③作直線PA、PB,所以直線PA、PB就是所求作的切線。
老師認(rèn)為小敏的作法正確.
請回答:連接OA,OB后,可證∠OAP=∠OBP=90°,其依據(jù)是;由此可證明直線PA,PB都是⊙O的切線,其依據(jù)是
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,E、F分別是邊AB、CD上的點(diǎn),AE=CF,連接EF、BF,EF與對角線AC交于點(diǎn)O,且BE=BF,∠BEF=2∠BAC.
(1)求證:OE=OF;
(2)求∠ACB的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,∠ADC=∠ABC=90°,AD=CD,DP⊥AB于P.若四邊形ABCD的面積是18,則DP的長是________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計(jì)算:(1)20+(﹣14)﹣(﹣18)﹣13; (2)﹣2;
(3)(﹣7)×(﹣5)﹣90÷(﹣15) (4)-120×+(-7)×+37×
(5)﹣14﹣(1﹣0.5)××[2-(-3)2].
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)的解析式是y=x2﹣2x﹣3.
(1)與x軸的交點(diǎn)坐標(biāo)是;頂點(diǎn)坐標(biāo)是;
(2)在坐標(biāo)系中利用描點(diǎn)法畫出此拋物線.
x | … | … | |||||
y | … | … |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知函數(shù)的圖象與x軸、y軸分別交于點(diǎn)A,B,與函數(shù)y=x的圖象交于點(diǎn)M,點(diǎn)M的橫坐標(biāo)為2.在x軸上有一點(diǎn)P (a,0)(其中a>2),過點(diǎn)P作x軸的垂線,分別交函數(shù)和y=x的圖象于點(diǎn)C,D.
(1)求點(diǎn)A的坐標(biāo);
(2)若OB=CD,求a的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com