【題目】如圖,已知五邊形ABCDE 是⊙O 的內(nèi)接正五邊形,且⊙O 的半徑為1.則圖中陰影部分的面積是(
A.
B.
C.
D.

【答案】B
【解析】解:∵五邊形ABCDE 是⊙O 的內(nèi)接正五邊形, ∴ = = =
易知△EOA≌△AOB≌△BOC≌△COD,
∴△AOE、△AOB、△BOC、△COD的面積相等,
∴S=S扇形OAC
=
= π,
故選B
【考點(diǎn)精析】本題主要考查了正多邊形和圓和扇形面積計(jì)算公式的相關(guān)知識點(diǎn),需要掌握圓的內(nèi)接四邊形的對角互補(bǔ),并且任何一個外角都等于它的內(nèi)對角;圓的外切四邊形的兩組對邊的和相等;在圓上,由兩條半徑和一段弧圍成的圖形叫做扇形;扇形面積S=π(R2-r2)才能正確解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】萬安縣開發(fā)區(qū)某電子電路板廠到井岡山大學(xué)從應(yīng)屆畢業(yè)生中招聘公司職員,對應(yīng)聘者的專業(yè)知識、英語水平、參加社會實(shí)踐與社團(tuán)活動等三項(xiàng)進(jìn)行測試或成果認(rèn)定,三項(xiàng)的得分滿分都為100分,三項(xiàng)的分?jǐn)?shù)分別按5∶3∶2的比例記入每人的最后總分,有4位應(yīng)聘者的得分如下表所示.

項(xiàng)目

專業(yè)知識

英語水平

參加社會實(shí)踐與

社團(tuán)活動等

85

85

90

85

85

70

80

90

70

90

90

50

(1)分別算出4位應(yīng)聘者的總分;

(2)表中四人“專業(yè)知識”的平均分為85分,方差為12.5,四人“英語水平”的平均分為87.5分,方差為6.25,請你求出四人“參加社會實(shí)踐與社團(tuán)活動等”的平均分及方差;

(3)分析(1)和(2)中的有關(guān)數(shù)據(jù),你對大學(xué)生應(yīng)聘者有何建議?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在圓心角為90°的扇形OAB中,半徑OA=4,C為 的中點(diǎn),D、E分別為OA,OB的中點(diǎn),則圖中陰影部分的面積為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】作圖題:(只保留作圖痕跡)如圖,在方格紙中,有兩條線段AB、BC.利用方格紙完成以下操作:

(1)過點(diǎn)A作BC的平行線;

(2)過點(diǎn)C作AB的平行線,與(1)中的平行線交于點(diǎn)D;

(3)過點(diǎn)B作AB的垂線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,把正六邊形各邊按同一方向延長,使延長的線段與原正六邊形的邊長相等,順次連接這六條線段外端點(diǎn)可以得到一個新的正六邊形,…,重復(fù)上述過程,經(jīng)過2018次后,所得到的正六邊形邊長是原正六邊形邊長的(
A.( 2016
B.( 2017
C.( 2018
D.( 2019

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,有一個不定的正方形ABCD,它的兩個相對的頂點(diǎn)A,C分別在邊長為1的正六邊形一組對邊上,另外兩個頂點(diǎn)B,D在正六邊形內(nèi)部(包括邊界),則正方形邊長a的取值范圍是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們規(guī)定:一個正n邊形(n為整數(shù),n≥4)的最短對角線與最長對角線長度的比值叫做這個正n邊形的“特征值”,記為λn , 那么λ6=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,A、B兩點(diǎn)在數(shù)軸上對應(yīng)的數(shù)是ab,且,點(diǎn)P為數(shù)軸上一動點(diǎn),對應(yīng)的數(shù)為x.

1)求AB兩點(diǎn)間的距離;

2)是否存在點(diǎn)P,使AP=PB,若存在,求出x的值;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在長方形ABCD中,AB=2,BC=1,運(yùn)點(diǎn)P從點(diǎn)B出發(fā),沿路線BCD作勻速運(yùn)動,那么ABP的面積與點(diǎn)P運(yùn)動的路程之間的函數(shù)圖象大致是( ).

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊答案