如圖,已知點M,N,P,Q分別是凸四邊形ABCD四邊的中點,在下列4個命題中:
①四邊形MNPQ是梯形;
②當(dāng)四邊形ABCD的對角線相等時,四邊形MNPQ是菱形;
③當(dāng)四邊形ABCD的對角線垂直時,四邊形MNPQ是矩形;
④當(dāng)四邊形ABCD的對角線相等且垂直時,四邊形MNPQ是正方形.
正確的有( 。
A.1個B.2個C.3個D.4個

如圖,連接AC、BD,
∵點M,N,P,Q分別是凸四邊形ABCD四邊的中點,
∴MNAC,MN=
1
2
AC,PQAC,PQ=
1
2
AC,
∴MNPQ,MN=PQ,
∴四邊形MNPQ是平行四邊形,故①小題錯誤;
當(dāng)四邊形ABCD的對角線相等時,同理可得NP=MQ=
1
2
BD,
所以,MN=NP=PQ=MQ,
所以,四邊形MNPQ是菱形,故②小題正確;
當(dāng)四邊形ABCD的對角線垂直時,可以證明∠M=90°,
所以,四邊形MNPQ是矩形,故③小題正確;
當(dāng)四邊形ABCD的對角線相等且垂直時,四邊形MNPQ既是菱形也是矩形,所以是正方形,故④小題正確,
綜上所述,正確的是②③④共3個.
故選C.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖1,BD、CE分別是△ABC的外角平分線,過點A作AF⊥BD,AG⊥CE,垂足分別為F、G,連接FG,延長AF、AG,與直線BC相交于M、N.
(1)試說明:FG=
1
2
(AB+BC+AC);
(2)如圖2,若BD、CE分別是△ABC的內(nèi)角平分線,則線段FG與△ABC三邊又有怎樣的數(shù)量關(guān)系?請寫出你的猜想,并對其中的一種情況說明理由;
(3)如圖3,若BD為△ABC的內(nèi)角平分線,CE為△ABC的外角平分線,則線段FG與△ABC三邊的數(shù)量關(guān)系是______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

在△ABC中,D、E分別是邊AB、AC的中點,若BC=5,則DE的長是(  )
A.2.5B.5C.10D.15

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,在△ABC中,D、E分別為AB、AC的中點,若△ABC的面積為12cm2,則△ADE的面積為( 。
A.2cm2B.3cm2C.4cm2D.6cm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,△ABC中,AD為∠BAC的平分線,點F是BC的中點,BP⊥AD于D,AC=12,AB=8,求PF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,已知等邊三角形ABC的邊長為2,DE是它的中位線,則下面四個結(jié)論:
(1)DE=1;
(2)AB邊上的高為
3
;
(3)△CDE△CAB;
(4)△CDE的面積與△CAB面積之比為1:4.
其中正確的有( 。
A.1個B.2個C.3個D.4個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,?ABCD的周長為36,對角線AC,BD相交于點O.點E是CD的中點,BD=12,則△DOE的周長為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,DE是△ABC的中位線,△ABC的周長為8,則△ADE的周長是______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,若△ABC≌△A1B1C1,且∠A=110°,∠B=40°,則∠C1=______°.

查看答案和解析>>

同步練習(xí)冊答案