【題目】1)如圖1,等腰三角形ABC中,AB=AC,DBC的中點,DEAB與點E、DFAC與點F.求證:DE= DF

2)如圖2,等腰三角形ABC中,AB=AC=13,BC=10,點DBC邊上的動點,DEAB與點E、DFAC與點F.請問DE+DF的值是否隨點D位置的變化而變化?若不變,請直接寫出DE+DF的值;若變化,請說明理由.

【答案】1)見解析;(2)不變;.

【解析】

1)連接,的中點,那么就是等腰三角形底邊上的中線,根據(jù)等腰三角形三線合一的特性,可知道也是的角平分線,根據(jù)角平分線的點到角兩邊的距離相等,那么;

2)連接,根據(jù)三角形的面積公式即可得到,進而求得的值.

1)證明:如圖1,連接

,點邊上的中點,

平分,

、分別垂直、于點

2)解:不變.

如圖2所示:連接,

,,

底邊上的高,

的面積,

,

故答案為:

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB為⊙O的直徑,點E在⊙O上,C為的中點,過點C作直線CD⊥AE于D,連接AC,BC.

(1試判斷直線CD與⊙O的位置關系,并說明理由;

(2若AD=2,AC=,求AB的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,等腰三角形ABC中,ABAC,P點在BC邊上的高AD上,且,BP的延長線交ACE,若SABC10,則SABE_____SDEC_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知等邊三角形的邊長為,過邊上一點于點,延長線上一點,取,連接,交,則的長為______.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,PA是⊙O的切線,A是切點,AC是直徑,AB是弦,連接PB、PC,PCAB于點E,且PA=PB.

(1)求證:PB是⊙O的切線;

(2)若∠APC=3BPC,求的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,直線y=﹣x+3x軸、y軸交于點A,點B,點O關于直線AB的對稱點為點O′,且點O′恰好在反比例函數(shù)y=的圖象上.

(1)求點AB的坐標;

(2)求k的值;

(3)若y軸正半軸有點P,過點Px軸的平行線,且與反比例函數(shù)y=的圖象交于點Q,設A、P、Q、O′四個點所圍成的四邊形的面積為S.若S=SOAB時,求點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,∠A=90°,AB=AC,BD平分∠ABC,CEBDBD的延長線于E,若CE=5cm,求BD的長。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形中,點上一點,將沿翻折后點恰好落在邊上的點處,過,交,連接

求證:四邊形是菱形;

,求四邊形的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形ABCD中,AB=6,BC=8,點EBC邊上點,連接AE,把∠B沿AE折疊,使點B落在點B′處,當ΔCB′E為直角三角形時,則AE的長為____________.

查看答案和解析>>

同步練習冊答案