如圖,在△ABC,AB=AC,以AB為直徑的⊙O分別交AC、BC于點(diǎn)D、E,點(diǎn)F在AC的延長(zhǎng)線(xiàn)上,且∠CBF=∠CAB.
(1)求證:直線(xiàn)BF是⊙O的切線(xiàn);
(2)若AB=5,sin∠CBF=,求BC和BF的長(zhǎng).

【答案】分析:(1)連接AE,利用直徑所對(duì)的圓周角是直角,從而判定直角三角形,利用直角三角形兩銳角相等得到直角,從而證明∠ABF=90°.
(2)利用已知條件證得∴△AGC∽△BFA,利用比例式求得線(xiàn)段的長(zhǎng)即可.
解答:(1)證明:連接AE,
∵AB是⊙O的直徑,
∴∠AEB=90°,
∴∠1+∠2=90°.
∵AB=AC,
∴∠1=∠CAB.
∵∠CBF=∠CAB,
∴∠1=∠CBF
∴∠CBF+∠2=90°
即∠ABF=90°
∵AB是⊙O的直徑,
∴直線(xiàn)BF是⊙O的切線(xiàn).

(2)解:過(guò)點(diǎn)C作CH⊥BF于H,CG⊥AB于G.
∵sin∠CBF=,∠1=∠CBF,
∴sin∠1=,
∵在Rt△AEB中,∠AEB=90°,AB=5,
∴BE=AB•sin∠1=,
∵AB=AC,∠AEB=90°,
∴BC=2BE=2,
在Rt△ABE中,由勾股定理得AE==2,
∴sin∠2==,cos∠2==
在Rt△CBG中,可求得GC=4,GB=2,
∴AG=3,
∵GC∥BF,
∴△AGC∽△ABF,

∴BF==
點(diǎn)評(píng):本題考查常見(jiàn)的幾何題型,包括切線(xiàn)的判定,角的大小及線(xiàn)段長(zhǎng)度的求法,要求學(xué)生掌握常見(jiàn)的解題方法,并能結(jié)合圖形選擇簡(jiǎn)單的方法解題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在△ABC中,∠C=90°,∠A=30°,BC=1,將另外一個(gè)含30°角的△EDF的30°角精英家教網(wǎng)的頂點(diǎn)D放在AB邊上,E、F分別在AC、BC上,當(dāng)點(diǎn)D在AB邊上移動(dòng)時(shí),DE始終與AB垂直.
(1)設(shè)AD=x,CF=y,求y與x之間的函數(shù)解析式,并寫(xiě)出函數(shù)自變量的取值范圍;
(2)如果△CEF與△DEF相似,求AD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:如圖,在△ABC中,AB=AC,AE是角平分線(xiàn),BM平分∠ABC交AE于點(diǎn)M,經(jīng)過(guò)B,M兩點(diǎn)的⊙O交BC于點(diǎn)G,交AB于點(diǎn)精英家教網(wǎng)F,F(xiàn)B恰為⊙O的直徑.
(1)求證:AE與⊙O相切;
(2)當(dāng)BC=4,AC=6,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

7、如圖,在△ABC中,D是BC上的一點(diǎn),∠C=62°,∠CAD=32°,則∠ADB=
94
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在△ABC中,∠ACB=90°,BE平分∠ABC,CF平分∠ACB,CF,BE交于點(diǎn)P,AC=4cm,BC=3cm,AB=5cm,則△CPB的面積為
 
cm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在△ABC中,CD是高,CE為∠ACB的平分線(xiàn).若AC=15,BC=20,CD=12,EF∥AC,則∠CEF的大小為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案