【題目】如圖①,在平面直角坐標系中,二次函數(shù)y=x2+bx+c的圖象與坐標軸交于A,B,C三點,其中點A的坐標為(﹣3,0),點B的坐標為(4,0),連接AC,BC.動點P從點A出發(fā),在線段AC上以每秒1個單位長度的速度向點C作勻速運動;同時,動點Q從點O出發(fā),在線段OB上以每秒1個單位長度的速度向點B作勻速運動,當其中一點到達終點時,另一點隨之停止運動,設運動時間為t秒.連接PQ.
(1)填空:b= ,c= ;
(2)在點P,Q運動過程中,△APQ可能是直角三角形嗎?請說明理由;
(3)點M在拋物線上,且△AOM的面積與△AOC的面積相等,求出點M的坐標。
【答案】(1),4;(2)不可能是直角三角形,見解析;(3)M(1,4)或M(,-4)或M(,-4)
【解析】
(1)設拋物線的解析式為y=a(x+3)(x-4).將a=-代入可得到拋物線的解析式,從而可確定出b、c的值;
(2)先求得點C的坐標,依據(jù)勾股定理可求得AC=5,則PC=5-t,AQ=3+t,再判斷當△APQ是直角三角形時,則∠APQ=90°,從而得出AOCAPQ,得到比例式列方程求解即可;
(3)根據(jù)點M在拋物線上,設出點M的坐標為(m,﹣m2+m+4),再根據(jù)△AOM的面積與△AOC的面積相等,從而得出﹣m2+m+4=,解方程即可.
解:(1)設拋物線的解析式為y=a(x+3)(x﹣4).將a=﹣代入得:y=﹣x2+x+4,
∴b=,c=4.
(2)在點P、Q運動過程中,△APQ不可能是直角三角形.
理由如下:∵在點P、Q運動過程中,∠PAQ、∠PQA始終為銳角,
∴當△APQ是直角三角形時,則∠APQ=90°.
將x=0代入拋物線的解析式得:y=4,
∴C(0,4).∵點A的坐標為(﹣3,0),
∴在Rt△AOC中,依據(jù)勾股定理得:AC=5,
∵AP=OQ=t,∴AQ=3+t,
∵∠OAC=∠PAQ,∠APQ=∠AOC
∴AOCAPQ
∴AP:AO=AQ:AC
∴= ∴t=4.5.
∵由題意可知:0≤t≤4,
∴t=4.5不合題意,即△APQ不可能是直角三角形.
(3 )設點M的坐標為(m,﹣m2+m+4)
∵△AOM的面積與△AOC的面積相等,且底都為AO,C(0,4).
∴﹣m2+m+4=
當﹣m2+m+4=-4時,解得:m=或,
當﹣m2+m+4=4時,解得:m=1或0
∵當m=0時,與C重合,∴m=或或1
∴ M(1,4)或M(,-4)或M(,-4)
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知矩形ABCD中,E是AD上一點,F是AB上的一點,EF⊥EC,且EF=EC.
(1)求證:△AEF≌△DCE.
(2)若DE=4cm,矩形ABCD的周長為32cm,求AE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某商場購進一批單價為4元的日用品,若按每件5元的價格銷售,每天能賣出300件,若按每件6元的價格銷售,每天能賣出200件,假定每天銷售件數(shù)(件)與價格(元/件)之間滿足一次函數(shù)關系.
(1)試求與之間的函數(shù)關系式;
(2)令每天的利潤為,求出與之間的函數(shù)關系式;當銷售價格定為多少時,才能使每天的利潤最大?每天最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】A,B兩地被大山阻隔,若要從A地到B地,只能沿著如圖所示的公路先從A地到C地,再由C地到B地.現(xiàn)計劃開鑿隧道A,B兩地直線貫通,經(jīng)測量得:∠CAB=30°,∠CBA=45°,AC=20km,求隧道開通后與隧道開通前相比,從A地到B地的路程將縮短多少?(結果精確到0.1km,參考數(shù)據(jù): ≈1.414, ≈1.732)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知A(﹣4,a),B(﹣1,2)是一次函數(shù)y1=kx+b與反比例函數(shù)y2=(m<0)圖象的兩個交點,AC⊥x軸于C.
(1)求出k,b及m的值.
(2)根據(jù)圖象直接回答:在第二象限內,當y1>y2時,x的取值范圍是 ________.
(3)若P是線段AB上的一點,連接PC,若△PCA的面積等于,求點P坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AD是圓O的切線,切點為A,AB是圓O的弦。過點B作BC//AD,交圓O于點C,連接AC,過點C作CD//AB,交AD于點D。連接AO并延長交BC于點M,交過點C的直線于點P,且BCP=ACD。
(1)判斷直線PC與圓O的位置關系,并說明理由:
(2) 若AB=9,BC=6,求PC的長。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某商場準備進一批兩種不同型號的衣服,已知購進A種型號衣服9件,B種型號衣服10件,則共需1810元;若購進A種型號衣服12件,B種型號衣服8件,共需1880元;已知銷售一件A型號衣服可獲利18元,銷售一件B型號衣服可獲利30元,要使在這次銷售中獲利不少于699元,且A型號衣服不多于28件.
(1)求A、B型號衣服進價各是多少元?
(2)若已知購進A型號衣服是B型號衣服的2倍還多4件,則商店在這次進貨中可有幾種方案并簡述購貨方案.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某商場一種商品的進價為每件30元,售價為每件40元.每天可以銷售48件,為盡快減少庫存,商場決定降價促銷.
(1)若該商品連續(xù)兩次下調相同的百分率后售價降至每件32.4元,求兩次下降的百分率;
(2)經(jīng)調查,若每降價0.5元,每天可多銷售4件,那么每天要想獲得510元的利潤,每件應降價多少元?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com