如圖所示,弦AB、CD相交于點O,連結AD、BC,在不添加輔助線的情況下,請在圖中找出一對相等的角,它們是     
∠A=∠C(答案不唯一)。
直接根據(jù)圓周角定理和對頂角的性質解答即可:
∵∠A與∠C,∠B與∠D是同弧所對的圓周角,∠AOD與∠BOC是對頂角
∴∠A=∠C,∠B=∠D,∠AOD=∠BOC(答案不唯一)。
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:單選題

已知⊙O的半徑是6,點O到直線l的距離為5,則直線l與⊙O的位置關系是
A.相離B.相切C.相交D.無法判斷

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

若兩圓的半徑分別是2和3,圓心距是5,則這兩圓的位置關系是     

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,以AB為直徑的半圓O交AC于點D,且點D為AC的中點,DE⊥BC于點E,AE交半圓O于點F,BF的延長線交DE于點G.

(1)求證:DE為半圓O的切線;
(2)若GE=1,BF=,求EF的長.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,已知△ABC內接于⊙O,BC是⊙O的直徑,MN與⊙O相切,切點為A,若∠MAB=30°,則∠B=     度.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如果⊙O1與⊙O2的半徑分別是1和2,并且兩圓相外切,那么圓心距O1O2的長是
       .

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,已知AB是圓O的直徑,BC是圓O的弦,弦ED⊥AB于點F,交BC于點G,過點C作圓O的切線與ED的延長線交于點P.

(1)求證:PC=PG;
(2)點C在劣弧AD上運動時,其他條件不變,若點G是BC的中點,試探究CG、BF、BO三者之間的數(shù)量關系,并寫出證明過程;
(3)在滿足(2)的條件下,已知圓為O的半徑為5,若點O到BC的距離為時,求弦ED的長.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖在⊙O中,弦AB=8,OC⊥AB,垂足為C,且OC=3,則⊙O的半徑
A.5B.10C.8D.6

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,菱形ABCD的對角線BD、AC分別為2、,以B為圓心的弧與AD、DC相切,則陰影部分的面積是

A.       B.        C.        D.

查看答案和解析>>

同步練習冊答案