天水市某校為了開展“陽光體育”活動,需購買某一品牌的羽毛球,甲、乙兩超市均以每只3元的價格出售,并對一次性購買這一品牌羽毛球不低于100只的用戶均實行優(yōu)惠:甲超市每只羽毛球按原價的八折出售;乙超市送15只羽毛球后其余羽毛球每只按原價的九折出售.
(1)請你任選一超市,一次性購買x(x≥100且x為整數(shù))只該品牌羽毛球,寫出所付錢y(元)與x之間的函數(shù)關(guān)系式.
(2)若共購買260只該品牌羽毛球,其中在甲超市以甲超市的優(yōu)惠方式購買一部分,剩下的又在乙超市以乙超市的優(yōu)惠方式購買.購買260只該品牌羽毛球至少需要付多少元錢?這時在甲、乙兩超市分別購買該品牌羽毛球多少只?
(1)甲超市:y=3×0.8x=2.4x,
乙超市:y=3×0.9×(x﹣3)=2.7x﹣5.4;
(2)至少需要付504.6元,應在甲超市購買100株,在乙超市購買160株.

試題分析:(1)根據(jù)題意即可列出;
(2)可設在甲超市購買羽毛球a只,乙超市購買羽毛球(260﹣a)只,所花錢數(shù)為W元,可列出W與a的函數(shù)關(guān)系式,再根據(jù)題意列出關(guān)于a的不等式組,求出a的范圍,然后利用一次函數(shù)的性質(zhì)進行解答.
試題解析:(1)甲超市:y=3×0.8x=2.4x,
乙超市:y=3×0.9×(x﹣3)=2.7x﹣5.4;
(2)設在甲超市購買羽毛球a只,乙超市購買羽毛球(260﹣a)只,所花錢數(shù)為W元,
W=2.4a+2.7a﹣5.4=5.1a﹣5.4;

∴100≤a≤160
∵5.1>0,
∴W隨a的增大而增大,
∴a=100時,W最小=504.6,
260﹣100=160只.
答:至少需要付504.6元,應在甲超市購買100株,在乙超市購買160株.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:不詳 題型:解答題

若直線y=
1
2
x+2分別交x軸、y軸于A、C兩點,點P是該直線上在第一象限內(nèi)的一點,PB⊥x軸,B為垂足,且S△ABC=6.
(1)求點B和P的坐標.
(2)過點B畫出直線BQAP,交y軸于點Q,并直接寫出點Q的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知兩直線L1:y=k1x+b1,L2:y=k2x+b2,若L1⊥L2,則有k1•k2=﹣1.
(1)應用:已知y=2x+1與y=kx﹣1垂直,求k;
(2)直線經(jīng)過A(2,3),且與y=x+3垂直,求解析式.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在邊長為4的正方形ABCD中,動點E以每秒1個單位長度的速度從點A開始沿邊AB向點B運動,動點F以每秒2個單位長度的速度從點B開始沿折線BC﹣CD向點D運動,動點E比動點F先出發(fā)1秒,其中一個動點到達終點時,另一個動點也隨之停止運動,設點F的運動時間為t秒.

(1)點F在邊BC上.
①如圖1,連接DE,AF,若DE⊥AF,求t的值;
②如圖2,連結(jié)EF,DF,當t為何值時,△EBF與△DCF相似?
(2)如圖3,若點G是邊AD的中點,BG,EF相交于點O,試探究:是否存在在某一時刻t,使得?若存在,求出t的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在平面直角坐標系中,點O坐標原點,直線l分別交x軸、y軸于A,B兩點,OA<OB,且OA、OB的長分別是一元二次方程的兩根.
(1)求直線AB的函數(shù)表達式;
(2)點P是y軸上的點,點Q第一象限內(nèi)的點.若以A、B、P、Q為頂點的四邊形是菱形,請直接寫出Q的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

平面直角坐標系中,一次函數(shù)和反比例函數(shù)的圖象都經(jīng)過點.
(1)求的值和一次函數(shù)的表達式;
(2)點B在雙曲線上,且位于直線的下方,若點B的橫、縱坐標都是整數(shù),直接寫出點B的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

直線y=-
4
3
x+4和x軸、y軸分別相交于點A、B,在平面直角坐標系內(nèi),A、B兩點到直線a的距離均為2,則滿足條件的直線a的條數(shù)為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

已知直線,若,那么該直線不經(jīng)過(     )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

某校辦工廠,今年年產(chǎn)值15萬元,今后計劃每年在去年的基礎上增加3%,年產(chǎn)值y萬元與年數(shù)x的函數(shù)關(guān)系式為       

查看答案和解析>>

同步練習冊答案