【題目】如圖,在△ABC中,D、E分別是AB、AC的中點,將△ADE沿線段DE向下折疊,得到圖2,下列關(guān)于圖2的結(jié)論中,不一定成立的是(

A.DEBCB.DBA是等腰三角形

C.A落在BC邊的中點D.B+C+1180°

【答案】C

【解析】

根據(jù)中位線定理,可以判斷A選項正確;根據(jù)折疊的性質(zhì),且DAB中點,可知BDAD,故B選項正確;根據(jù)折疊的性質(zhì),可判斷AD=DB,AE=EC,而不能判斷BA=AC,故C選項錯誤;因為∠B+C+A=180°,根據(jù)折疊的性質(zhì)知∠A=1,故∠B+C+1180°,故D選項正確.

解:∵在△ABC中,D、E分別是AB、AC的中點,

DEBC;

A選項正確;

∵由折疊的性質(zhì)可得:BDAD,

∴△DBA是等腰三角形;

B選項正確;

由折疊的性質(zhì)可得:ADBDAEEC,

但不能確定ABAC,

C選項錯誤;

∵在△ABC中,∠A+B+C180°,

由折疊的性質(zhì)可得:∠A=∠1

∴∠B+C+1180°

D選項正確.

故選C

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】 如圖,從地面上的點A看一山坡上的電線桿PQ,測得桿頂端點P的仰角是45°,向前走9m到達B點,測得桿頂端點P和桿底端點Q的仰角分別是60°和30°.

1)求∠BPQ的度數(shù);

2)求該電線桿PQ的高度.(結(jié)果保留根號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果三角形的兩個內(nèi)角αβ滿足2α+β=90°,那么我們稱這樣的三角形為“準互余三角形”.在RtABC中,∠ACB=90°,AC=6,BC=8.點DBC邊上一點,連接AD,若△ABD是準互余三角形,則BD的長為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某游泳池每次換水前后水的體積基本保持不變,當該游泳池以每小時300立方米的速度放水時,經(jīng)3小時能將池內(nèi)的水放完.設(shè)放水的速度為x立方米/時,將池內(nèi)的水放完需y小時.已知該游泳池每小時的最大放水速度為350立方米

1)求y關(guān)于x的函數(shù)表達式.

2)若該游泳池將放水速度控制在每小時200立方米至250立方米(含200立方米和250立方米),求放水時間y的范圍.

3)該游泳池能否在2.5小時內(nèi)將池內(nèi)的水放完?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】根據(jù)《N家學(xué)生體質(zhì)健康標準》規(guī)定:九年級男生坐位體前屈達到17.8厘米及以上為優(yōu)秀;達到13.8厘米至17.7厘米為良好;達到-0.2厘米至13.7厘米為及格;達到-0.3厘米及以下為不及格,某校為了了解九年級男生的身體柔韌性情況,從該校九年級男生中隨機抽取了20%的學(xué)生進行坐位體前屈測試,并把測試結(jié)果繪制成如圖所示的統(tǒng)計表和扇形統(tǒng)計圖(部分信息不完整),請根據(jù)所給信息解答下列問題.

某校九年級若干男生坐位體前屈成績統(tǒng)計表

成績(厘米)

等級

人數(shù)

17.8

優(yōu)秀

13.8~17.7

良好

0.2~13.7

及格

15

-0.3

不及格

1)求參加本次坐位體前屈測試的人數(shù);

2)求a,bc的值;

3)試估計該年級男生中坐位體前屈成績不低于13.8厘米的人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系,點從點運動到點停止,連接,以長為直徑作.

1)若,求的半徑;

2)當相切時,求的面積;

3)連接,在整個運動過程中,的面積是否為定值,如果是,請直接寫出面積的定值,如果不是,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,AB=AC,∠BAC=90°,點D,E分別在AB,BC上,∠EAD=∠EDA,點F為DE的延長線與AC的延長線的交點.

(1)求證:DE=EF;

(2)判斷BD和CF的數(shù)量關(guān)系,并說明理由;

(3)若AB=3,AE=,求BD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC≌△ABD,點E在邊AB上,CE∥BD,連接DE

求證:1∠CEB=∠CBE

2)四邊形BCED是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商店購進一批成本為每件 30 元的商品,經(jīng)調(diào)查發(fā)現(xiàn),該商品每天的銷售量 y(件)與銷售單價 x(元)之間滿足一次函數(shù)關(guān)系,其圖象如圖所示.

1)求該商品每天的銷售量 y 與銷售單價 x 之間的函數(shù)關(guān)系式;

2)若商店按單價不低于成本價,且不高于 50 元銷售,則銷售單價定為多少,才能使銷售該商品每天獲得的利潤 w(元)最大?最大利潤是多少?

3)若商店要使銷售該商品每天獲得的利潤不低于 800 元,則每天的銷售量最少應(yīng)為多少件?

查看答案和解析>>

同步練習(xí)冊答案