【題目】△ABC中,∠A是最小角,∠B是最大角,且2∠B=5∠A,若∠B的最大值m°,最小值n°,則m+n=_____.
【答案】175.
【解析】
由2∠B=5∠A,得∠B=∠A,根據(jù)三角形內(nèi)角和定理得∠C=180°﹣∠A﹣∠B=180°﹣∠A;根據(jù)題意有∠A≤∠C≤∠B,則∠A≤180°﹣∠A,和180°﹣∠A≤∠A,解兩個(gè)不等式得30°≤∠A≤40°,而∠A=∠B,得到∠B的范圍,從而確定m,n.
解:∵2∠B=5∠A,即∠B=∠A,
∴∠C=180°﹣∠A﹣∠B=180°﹣∠A,
又∵∠A≤∠C≤∠B,
∴∠A≤180°﹣∠A,
解得∠A≤40°;
又∵180°﹣∠A≤∠A,
解得∠A≥30°,
∴30°≤∠A≤40°,
即30°≤∠B≤40°,
∴75°≤∠B≤100°
∴m+n=175.
故答案為:175.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,D,A,E三點(diǎn)都在直線m上,∠BDA=∠AEC=∠BAC,BD=3,CE=6,則DE的長(zhǎng)為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,已知,的垂直平分線交于點(diǎn),交于點(diǎn),連接.
(1)若,則的度數(shù)是 ;
(2)若,的周長(zhǎng)是.
①求的長(zhǎng)度;
②若點(diǎn)為直線上一點(diǎn),請(qǐng)你直接寫出周長(zhǎng)的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)B坐標(biāo)為(-3,0),點(diǎn)A是y軸正半軸上一點(diǎn),且AB=5,點(diǎn)P是x軸上位于點(diǎn)B右側(cè)的一個(gè)動(dòng)點(diǎn),設(shè)點(diǎn)P的坐標(biāo)為(m,0)
(1)點(diǎn)A的坐標(biāo)為( )
(2)當(dāng)△ABP是等腰三角形時(shí),求P點(diǎn)的坐標(biāo);
(3)如圖2,過點(diǎn)P作PE⊥AB交線段AB于點(diǎn)E,連接OE.若點(diǎn)A關(guān)于直線OE的對(duì)稱點(diǎn)為A',當(dāng)點(diǎn)A'恰好落在直線PE上時(shí),BE=________(直接寫出答案)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖四邊形ABCD中,∠ABC=3∠CBD,∠ADC=3∠CDB,∠C=128°,則∠A的度數(shù)是( 。
A.60°B.76°C.77°D.78°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形中,.點(diǎn)為邊上一點(diǎn)(不與點(diǎn)重合),點(diǎn)為邊上一點(diǎn),線段、相交于點(diǎn),其中.
求證:;
若,求的長(zhǎng)及四邊形的面積;
連接,若是以為腰的等腰三角形,求的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點(diǎn)在的邊上,交于,交于,若添加條件________,則四邊形是矩形;若添加條件________,則四邊形是菱形;若添加條件________,則四邊形是正方形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,是等腰內(nèi)一點(diǎn),,且,,.將繞點(diǎn)按逆時(shí)針方向旋轉(zhuǎn)后,得到.
直接寫出旋轉(zhuǎn)的最小角度;
求的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD繞點(diǎn)C順時(shí)針旋轉(zhuǎn)90°后得到矩形CEFG,連接DG交EF于H,連接AF交DG于M;
(1)求證:AM=FM;
(2)若∠AMD=a.求證:=cosα.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com