【題目】因式分解:ax﹣ay=

【答案】a(x-y).

【解析】

試題分析: 直接提公因式分解因式即可.ax-ay= a(x-y).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某公司投資1200萬元購買了一條新生產(chǎn)線生產(chǎn)新產(chǎn)品.根據(jù)市場調(diào)研,生產(chǎn)每件產(chǎn)品需要成本50元,該產(chǎn)品進(jìn)入市場后不得低于80元/件且不得超過160元/件,該產(chǎn)品銷售量y(萬件)與產(chǎn)品售價(jià)x(元)之間的關(guān)系如圖所示.

(1)求y與x之間的函數(shù)關(guān)系式,并寫出x的取值范圍;

(2)第一年公司是盈利還是虧損?求出當(dāng)盈利最大或虧損最小時(shí)的產(chǎn)品售價(jià);

(3)在(2)的前提下,即在第一年盈利最大或者虧損最小時(shí),公司第二年重新確定產(chǎn)品售價(jià),能否使前兩年盈利總額達(dá)790萬元?若能,求出第二年產(chǎn)品售價(jià);若不能,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列說法正確的是(

A. 任意兩個(gè)等腰三角形都相似 B. 任意兩個(gè)菱形都相似

C. 任意兩個(gè)正五邊形都相似 D. 對(duì)應(yīng)角相等的兩個(gè)多邊形相似

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知等腰三角形的兩邊長分別是36,那么它的周長等于(

A. 12 B. 1215 C. 15 D. 1518

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,AB是O的直徑,AB=6,點(diǎn)C,D在O上,且CD平分ACB,CAB=60°

(1)求BC及陰影部分的面積;

(2)求CD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)中,已知四邊形ABCD是正方形,點(diǎn)A在原點(diǎn),點(diǎn)B的坐標(biāo)是(3,1),則點(diǎn)D的坐標(biāo)是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,直線AB與x軸負(fù)半軸、y軸正半軸分別交于A、B兩點(diǎn),OA、OB的長度分別為a和b,且滿足a2﹣2ab+b2=0.

(1)判斷AOB的形狀;

(2)如圖②,COBAOB關(guān)于y軸對(duì)稱,D點(diǎn)在AB上,點(diǎn)E在BC上,且AD=BE,試問:線段OD、OE是否存在某種確定的數(shù)量關(guān)系和位置關(guān)系?寫出你的結(jié)論并證明;

(3)將(2)中DOE繞點(diǎn)O旋轉(zhuǎn),使D、E分別落在AB,BC延長線上(如圖③),BDECOE有何關(guān)系?直接說出結(jié)論,不必說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】從甲學(xué)校到乙學(xué)校有A1、A2、A3三條線路,從乙學(xué)校到丙學(xué)校有B1、B2二條線路.

(1)利用樹狀圖或列表的方法表示從甲學(xué)校到丙學(xué)校的線路中所有可能出現(xiàn)的結(jié)果;

(2)小張任意走了一條從甲學(xué)校到丙學(xué)校的線路,求小張恰好經(jīng)過了B1線路的概率是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場經(jīng)營某種品牌的玩具,購進(jìn)時(shí)的單價(jià)是30元,根據(jù)市場調(diào)查:在一段時(shí)間內(nèi),銷售單價(jià)是40元時(shí),銷售量是600件,而銷售單價(jià)每漲2元,就會(huì)少售出20件玩具.

(1)不妨設(shè)該種品牌玩具的銷售單價(jià)為x元(x>40),請(qǐng)你分別用x的代數(shù)式來表示銷售量y件和銷售該品牌玩具獲得利潤ω元,并把結(jié)果填寫在表格中:

(2)在(1)問條件下,若商場獲得了10000元銷售利潤,求該玩具銷售單價(jià)x應(yīng)定為多少元?

(3)在(1)問條件下,若玩具廠規(guī)定該品牌玩具銷售單價(jià)不低于44元,且商場要完成不少于400件的銷售任務(wù),求商場銷售該品牌玩具獲得的最大利潤是多少元?

查看答案和解析>>

同步練習(xí)冊答案