【題目】如圖,在Rt△ABC中,∠ACB=90°,∠ABC=60°,AB=4,點D是BC上一動點,以BD為邊在BC的右側作等邊△BDE,F是DE的中點,連結AF,CF,則AF+CF的最小值是_____.
【答案】2.
【解析】
以BC為邊作等邊三角形BCG,連接FG,AG,作GH⊥AC交AC的延長線于H,根據(jù)等邊三角形的性質(zhì)得到DC=EG,根據(jù)全等三角形的性質(zhì)得到FC=FG,于是得到在點D的運動過程中,AF+FC=AF+FG,而AF+FG≥AG,當F點移動到AG上時,即A,F,G三點共線時,AF+FC的最小值=AG,根據(jù)勾股定理即可得到結論.
以BC為邊作等邊三角形BCG,連接FG,AG,
作GH⊥AC交AC的延長線于H,
∵△BDE和△BCG是等邊三角形,
∴DC=EG,
∴∠FDC=∠FEG=120°,
∵DF=EF,
∴△DFC≌△EFG(SAS),
∴FC=FG,
∴在點D的運動過程中,AF+FC=AF+FG,而AF+FG≥AG,
∴當F點移動到AG上時,即A,F,G三點共線時,AF+FC的最小值=AG,
∵BC=CG=AB=2,AC=2,
在Rt△CGH中,∠GCH=30°,CG=2,
∴GH=1,CH=,
∴AG= ==2,
∴AF+CF的最小值是2.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象交x軸于(-1,0)點,則下列結論中正確的是( )
A. c<0 B. a-b+c<0 C. b2<4ac D. 2a+b=0
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,在正方形ABCD中,點E、F分別在BC和CD上,AE = AF
(1)求證:BE = DF;
(2)連接AC交EF于點O,延長OC至點M,使OM = OA,連接EM、FM.判斷四邊形AEMF是什么特殊四邊形?并證明你的結論.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下面關于x的方程中:①ax2+x+2=0;②3(x-9)2-(x+1)2=1;③x+3=④x2-a=0(a為任意實數(shù);⑤=x-1一元二次方程的個數(shù)是
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為積極響應市委政府“加快建設天藍水碧地綠的美麗長沙”的號召,我市某街道決定從備選的五種樹中選購一種進行栽種.為了更好地了解社情民意,工作人員在街道轄區(qū)范圍內(nèi)隨機抽取了部分居民,進行“我最喜歡的一種樹”的調(diào)查活動(每人限選其中一種樹),并將調(diào)查結果整理后,繪制成如圖兩個不完整的統(tǒng)計圖:
請根據(jù)所給信息解答以下問題:
(1)這次參與調(diào)查的居民人數(shù)為: ;
(2)請將條形統(tǒng)計圖補充完整;
(3)請計算扇形統(tǒng)計圖中“楓樹”所在扇形的圓心角度數(shù);
(4)已知該街道轄區(qū)內(nèi)現(xiàn)有居民8萬人,請你估計這8萬人中最喜歡玉蘭樹的有多少人?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中有兩點A(6,0),B(0,3),如果點C在x軸上(C與A不重合),當點C的坐標為 時,△BOC與△AOB相似.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,等腰△ABC的周長為21,底邊BC=5,AB的垂直平分線DE交AB于點D,交AC于點E,則△BEC的周長為( )
A. 13B. 16C. 8D. 10
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com