【題目】如圖,在一張矩形紙片ABCD中,AB=4,BC=8,點(diǎn)E,F(xiàn)分別在AD,BC上,將紙片ABCD沿直線EF折疊,點(diǎn)C落在AD上的一點(diǎn)H處,點(diǎn)D落在點(diǎn)G處,有以下四個(gè)結(jié)論:
①四邊形CFHE是菱形;
②EC平分∠DCH;
③線段BF的取值范圍為3≤BF≤4;
④當(dāng)點(diǎn)H與點(diǎn)A重合時(shí),EF=2
以上結(jié)論中,你認(rèn)為正確的有 . (填序號(hào))

【答案】①③④
【解析】解:∵FH與CG,EH與CF都是矩形ABCD的對(duì)邊AD、BC的一部分,
∴FH∥CG,EH∥CF,
∴四邊形CFHE是平行四邊形,
由翻折的性質(zhì)得,CF=FH,
∴四邊形CFHE是菱形,(故①正確);
∴∠BCH=∠ECH,
∴只有∠DCE=30°時(shí)EC平分∠DCH,(故②錯(cuò)誤);
點(diǎn)H與點(diǎn)A重合時(shí),設(shè)BF=x,則AF=FC=8﹣x,
在Rt△ABF中,AB2+BF2=AF2 ,
即42+x2=(8﹣x)2 ,
解得x=3,
點(diǎn)G與點(diǎn)D重合時(shí),CF=CD=4,
∴BF=4,
∴線段BF的取值范圍為3≤BF≤4,(故③正確);
過點(diǎn)F作FM⊥AD于M,

則ME=(8﹣3)﹣3=2,
由勾股定理得,
EF= = =2 ,(故④正確);
綜上所述,結(jié)論正確的有①③④共3個(gè),
故答案為①③④.
①先判斷出四邊形CFHE是平行四邊形,再根據(jù)翻折的性質(zhì)可得CF=FH,然后根據(jù)鄰邊相等的平行四邊形是菱形證明,判斷出①正確;②根據(jù)菱形的對(duì)角線平分一組對(duì)角線可得∠BCH=∠ECH,然后求出只有∠DCE=30°時(shí)EC平分∠DCH,判斷出②錯(cuò)誤;③點(diǎn)H與點(diǎn)A重合時(shí),設(shè)BF=x,表示出AF=FC=8﹣x,利用勾股定理列出方程求解得到BF的最小值,點(diǎn)G與點(diǎn)D重合時(shí),CF=CD,求出BF=4,然后寫出BF的取值范圍,判斷出③正確;④過點(diǎn)F作FM⊥AD于M,求出ME,再利用勾股定理列式求解得到EF,判斷出④正確.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】《九章算術(shù)》是我國(guó)古代內(nèi)容極為豐富的數(shù)學(xué)名著,書中有如下問題:“今有五人五錢,令上二人所得與下三人等.問各得幾何?”其意思為:“現(xiàn)有甲乙丙丁戊五人依次差值等額分五錢,要使甲乙兩人所得的錢與丙丁戊三人所得的錢相等,問每人各得多少錢?”根據(jù)題意,乙得(
A.
B.
C.1錢
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若關(guān)于x的一元二次方程 x2+ x+tana=0有兩個(gè)相等的實(shí)數(shù)根,則銳角a等于(
A.15°
B.30°
C.45°
D.60°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】旭日商場(chǎng)銷售A,B兩種品牌的鋼琴,這兩種鋼琴的進(jìn)價(jià)和售價(jià)如下表所示:

A

B

進(jìn)價(jià)(萬元/.套)

1.5

1.2

售價(jià)(萬元/套)

1.65

1.4

該商場(chǎng)計(jì)劃購(gòu)進(jìn)兩種鋼琴若干套,共需66萬元,全部銷售后可獲毛利潤(rùn)9萬元.(毛利潤(rùn)=(售價(jià)﹣進(jìn)價(jià))×銷售量)
(1)該商場(chǎng)計(jì)劃購(gòu)進(jìn)A,B兩種品牌的鋼琴各多少套?
(2)通過市場(chǎng)調(diào)查,該商場(chǎng)決定在原計(jì)劃的基礎(chǔ)上,減少A種鋼琴的購(gòu)進(jìn)數(shù)量,增加B種鋼琴的購(gòu)進(jìn)數(shù)量,已知B種鋼琴增加的數(shù)量是A種鋼琴減少數(shù)量的1.5倍,若用于購(gòu)進(jìn)這兩種鋼琴的總資金不超過69萬元,問A種鋼琴購(gòu)進(jìn)數(shù)量至多或減少多少套?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】從甲地到乙地的鐵路路程約為615千米,高鐵速度為300千米/小時(shí),直達(dá);動(dòng)車速度為200千米/小時(shí),行駛180千米后,中途要停靠徐州10分鐘,若動(dòng)車先出發(fā)半小時(shí),兩車與甲地之間的距離y(千米)與動(dòng)車行駛時(shí)間x(小時(shí))之間的函數(shù)圖象為(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某旅游風(fēng)景區(qū)出售一種紀(jì)念品,該紀(jì)念品的成本為12元/個(gè),這種紀(jì)念品的銷售價(jià)格為x(元/個(gè))與每天的銷售數(shù)量y(個(gè))之間的函數(shù)關(guān)系如圖所示.
(1)求y與x之間的函數(shù)關(guān)系式;
(2)銷售價(jià)格定為多少時(shí),每天可以獲得最大利潤(rùn)?并求出最大利潤(rùn).
(3)“十一”期間,游客數(shù)量大幅增加,若按八折促銷該紀(jì)念品,預(yù)計(jì)每天的銷售數(shù)量可增加200%,為獲得最大利潤(rùn),“十一”假期該紀(jì)念品打八折后售價(jià)為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,點(diǎn)D在△ABC的內(nèi)部且DB=DC,點(diǎn)E,F(xiàn)在△ABC的外部,F(xiàn)B=FA,EA=EC,∠FBA=∠DBC=∠ECA.

(1)①填空:△ACE∽;
(2)求證:△CDE∽△CBA;
(3)求證:△FBD≌△EDC;
(4)若點(diǎn)D在∠BAC的平分線上,判斷四邊形AFDE的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖甲,AB⊥BD,CD⊥BD,AP⊥PC,垂足分別為B、P、D,且三個(gè)垂足在同一直線上,我們把這樣的圖形叫“三垂圖”.

(1)證明:ABCD=PBPD.
(2)如圖乙,也是一個(gè)“三垂圖”,上述結(jié)論成立嗎?請(qǐng)說明理由.
(3)已知拋物線與x軸交于點(diǎn)A(﹣1,0),B(3,0),與y軸交于點(diǎn)(0,﹣3),頂點(diǎn)為P,如圖丙所示,若Q是拋物線上異于A、B、P的點(diǎn),使得∠QAP=90°,求Q點(diǎn)坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在同一直角坐標(biāo)系中,直線y=﹣x+3與y=3x﹣5相交于C點(diǎn),分別與x軸交于A、B兩點(diǎn).P、Q分別為直線y=﹣x+3與y=3x﹣5上的點(diǎn).
(1)求△ABC的面積;
(2)若P、Q關(guān)于原點(diǎn)成中心對(duì)稱,求P點(diǎn)的坐標(biāo);
(3)若△QPC≌△ABC,求Q點(diǎn)的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案