精英家教網 > 初中數學 > 題目詳情
如圖,在直角梯形ABCD中,AD∥BC,∠B=90°,AB=8cm,AD=24cm,BC=26cm,AB為⊙O的直徑.動點P從A點開始沿AD邊向點D以1cm/s的速度運動,動點Q從點C開始沿CB邊向點B以3cm/s 的速度運動,P、Q 兩點同時出發(fā),當其中一點到達端點時,另一點也隨之停止運動,設運動時間為t(s),求:
(1)t分別為何值時,四邊形PQCD為等腰梯形?
(2)t分別為何值時,直線PQ與⊙O相切?

【答案】分析:(1)只要PQ=CD,PD≠QC,四邊形PQCD為等腰梯形,如圖,過P、D分別作BC的垂線,交BC于E、F點,則EF=PD,QE=FC=2,進而求出即可.
(2)因為點P、Q分別在線段AD和BC上的運動,可以統(tǒng)一到直線PQ的運動中,要探求時間t對直線PQ與⊙O位置關系的影響,可先求出t為何值時,直線PQ與⊙O相切這一整個運動過程中特殊點,再結合PQ的初始與終了位置一起加以考慮,設運動t秒時,直線PQ與⊙O相切于點G,如圖因為,AB=8,AP=t,BQ=26-3t,所以,PQ=26-2t,因而,過p做PH⊥BC,得HQ=26-4t,于是由勾股定理,可的關于t的一元二次方程,則t可求出.
解答:解:(1)如圖1,
由題意得,只要PQ=CD,PD≠QC,四邊形PQCD為等腰梯形,
過P、D分別作BC的垂線交BC于E、F兩點,
則由等腰梯形的性質可知,EF=PD,QE=FC=2,
所以3t-(24-t)=4,
解得t=7秒,
所以當t=7秒時,四邊形PQCD為等腰梯形.

(2)設運動t秒時,直線PQ與⊙O相切于點G,如圖2,過P作PH⊥BC于點H,
則PH=AB=8,BH=AP,
可得HQ=26-3t-t=26-4t,
由切線長定理得,PQ=AP+BQ=t+26-3t=26-2t
由勾股定理得:PQ2=PH2+HQ2,即 (26-2t)2=82+(26-4t)2
化簡整理得 3t2-26t+16=0,
解得t1=或 t2=8,
所以,當t1=或 t2=8時直線PQ與⊙O相切.
點評:此題主要考查了直線與圓的位置關系以及等腰梯形的性質和勾股定理的應用,利用已知圖形構造直角三角形進而利用勾股定理得出是解題關鍵.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

20、如圖,在直角梯形ABCD中,AD∥BC,CD⊥BC,E為BC邊上的點.將直角梯形ABCD沿對角線BD折疊,使△ABD與△EBD重合(如圖中陰影所示).若∠A=130°,AB=4cm,則梯形ABCD的高CD≈
3.1
cm.(結果精確到0.1cm)

查看答案和解析>>

科目:初中數學 來源: 題型:

精英家教網如圖,在直角梯形ABCD中,AB∥DC,∠D=90°,AC⊥BC,AB=10cm,BC=6cm,F點以2cm/秒的速度在線段AB上由A向B勻速運動,E點同時以1cm/秒的速度在線段BC上由B向C勻速運動,設運動時間為t秒(0<t<5).
(1)求證:△ACD∽△BAC;
(2)求DC的長;
(3)設四邊形AFEC的面積為y,求y關于t的函數關系式,并求出y的最小值.

查看答案和解析>>

科目:初中數學 來源: 題型:

(1998•大連)如圖,在直角梯形ABCD中.AD∥BC,DC⊥BC,且BC=3AD.以梯形的高AE為直徑的⊙O交AB于點F,交CD于點G、H.過點F引⊙O的切線交BC于點N.
(1)求證:BN=EN;
(2)求證:4DH•HC=AB•BF;
(3)設∠GEC=α.若tan∠ABC=2,求作以tanα、cotα為根的一元二次方程.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,在直角梯形ABCD中,DC∥AB,∠ADC=90°,AB=3a,CD=2a,AD=2,點E、F分別是腰AD、BC上的動點,點G在AB上,且四邊形AEFG是矩形.設FG=x,矩形AEFG的面積為y.
(1)求y與x之間的函數關式,并寫出自變量x的取值范圍;
(2)在腰BC上求一點F,使梯形ABCD的面積是矩形AEFG的面積的2倍,并求出此時BF的長;
(3)當∠ABC=60°時,矩形AEFG能否為正方形?若能,求出其邊長;若不能,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,在直角梯形ABCD中,AB∥CD,∠C=90°,AB=6cm,CD=10cm,AD=5cm,動點P、Q分別從點A、C同時出發(fā),點P以2cm/s的速度向點B移動,點Q以1cm/s的速度向點D移動,當一個動點到達終點時另一個動點也隨之停止運動.
(1)經過幾秒鐘,點P、Q之間的距離為5cm?
(2)連接PD,是否存在某一時刻,使得PD恰好平分∠APQ?若存在,求出此時的移動時間;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案