【題目】如圖,已知正比例函數(shù)y=kx(k>0)的圖象與x軸相交所成的銳角為70°,定點A的坐標為(0,8),P為y軸上的一個動點,M、N為函數(shù)y=kx(k>0)的圖象上的兩個動點,則AM+MP+PN的最小值為( 。
A. 4 B. 4 C. 8sin40° D. 8sin20°(1+cos20°+sin20°cos20°)
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC,△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,點C,D,E三點在同一直線上.
(1)求證:△BAD≌△CAE;
(2)猜想BD,CE有何特殊位置關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在東西方向的海岸線l上有一長為1km的碼頭MN(如圖),在碼頭西端M的正西19.5km處有一觀察站A.某時刻測得一艘勻速直線航行的輪船位于A的北偏西30°,且與A相距40km的B處;經(jīng)過1小時20分鐘,又測得該輪船位于A的北偏東60°,且與A相距km的C處.
(1)求該輪船航行的速度(保留精確結(jié)果);
(2)如果該輪船不改變航向繼續(xù)航行,那么輪船能否正好行至碼頭MN靠岸?請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,以的邊為邊,向外作等邊和等邊三角形,連接相交于點.
(1)求證:;
(2)求的度數(shù);
(3)請直接寫出的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在直角三角形ABC中,∠C=90°,AC=20,BC=10,PQ=AB,P,Q兩點分別在線段AC和過點A且垂直于AC的射線AM上運動,且點P不與點A,C重合,那么當點P運動到什么位置時,才能使△ABC與△APQ全等?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,在Rt△ABC中,∠BAC=90°,∠B=45°,O為BC中點,如果點M、N分別在線段AB、AC上移動,設(shè)AM長為x,CN的長為y,且x、y滿足等式=0(a>0).
(1)求證:BM=AN;
(2)請你證明△OMN為等腰直角三角形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】將△ABC繞點A按逆時針方向旋轉(zhuǎn)θ度,并使各邊長變?yōu)樵瓉淼膎倍,得△AB′C′,即如圖①,我們將這種變換記為[θ,n].
(1)如圖①,對△ABC作變換[60°,]得△AB′C′,則S△AB′C′:S△ABC= ;直線BC與直線B′C′所夾的銳角為 度;
(2)如圖②,△ABC中,∠BAC=30°,∠ACB=90°,對△ABC 作變換[θ,n]得△AB'C',使點B、C、C′在同一直線上,且四邊形ABB'C'為矩形,求θ和n的值;
(3)如圖③,△ABC中,AB=AC,∠BAC=36°,BC=l,對△ABC作變換[θ,n]得△AB′C′,使點B、C、B′在同一直線上,且四邊形ABB'C'為平行四邊形,求θ和n的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一個拱形橋架可以近似看作是由等腰梯形ABD8D1和其上方的拋物線D1OD8組成.若建立如圖所示的直角坐標系,跨度AB=44米,∠A=45°,AC1=4米,點D2的坐標為(-13,-1.69),則橋架的拱高OH=________米.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,點A的坐標是(20,0),點B的坐標是(16,0),點C、D在以OA為直徑的半圓M上,且四邊形OCDB是平行四邊形,則點C的坐標為______.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com