【題目】如圖,在矩形ABCD中,點(diǎn)E、F在邊AD上,AF=DE,連接BF、CE.
(1)求證:∠CBF=∠BCE;
(2)若點(diǎn)G、M、N在線段BF、BC、CE上,且 FG=MN=CN.求證:MG=NF;
(3)在(2)的條件下,當(dāng)∠MNC=2∠BMG時(shí),四邊形FGMN是什么圖形,證明你的結(jié)論.
【答案】(1)見解析;(2)見解析;(3)四邊形FGMN是矩形,見解析
【解析】
(1)由“SAS”可證△ABF≌△DCE,可得∠ABF=∠DCE,可得結(jié)論;
(2)通過(guò)證明四邊形FGMN是平行四邊形,可得MG=NF;
(3)過(guò)點(diǎn)N作NH⊥MC于點(diǎn)H,由等腰三角形的性質(zhì)可證∠BMG=∠MNH,可證∠GMN=90°,即可得四邊形FGMN是矩形.
證明:(1)∵四邊形ABCD是矩形
∴AB=CD,∠A=∠D=90°,且AF=DE
∴△ABF≌△DCE(SAS)
∴∠ABF=∠DCE,且∠ABC=∠DCB=90°
∴∠FBC=∠ECB
(2)∵FG=MN=CN
∴∠NMC=∠NCM
∴∠NMC=∠FBC
∴MN∥BF,且FG=MN
∴四邊形FGMN是平行四邊形
∴MG=NF
(3)四邊形FGMN是矩形
理由如下:
如圖,過(guò)點(diǎn)N作NH⊥MC于點(diǎn)H,
∵MN=NC,NH⊥MC
∴∠MNH=∠CNH=∠MNC,NH⊥MC
∴∠MNH+∠NMH=90°
∵∠MNC=2∠BMG,∠MNH=∠CNH=∠MNC
∴∠BMG=∠MNH,
∴∠BMG+∠NMH=90°
∴∠GMN=90°
∴四邊形FGMN是矩形
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖(1),已知點(diǎn)G在正方形ABCD的對(duì)角線AC上,GE⊥BC,垂足為點(diǎn)E,GF⊥CD,垂足為點(diǎn)F.
(1)證明與推斷:
①求證:四邊形CEGF是正方形;
②推斷:的值為 :
(2)探究與證明:
將正方形CEGF繞點(diǎn)C順時(shí)針?lè)较蛐D(zhuǎn)α角(0°<α<45°),如圖(2)所示,試探究線段AG與BE之間的數(shù)量關(guān)系,并說(shuō)明理由:
(3)拓展與運(yùn)用:
正方形CEGF在旋轉(zhuǎn)過(guò)程中,當(dāng)B,E,F(xiàn)三點(diǎn)在一條直線上時(shí),如圖(3)所示,延長(zhǎng)CG交AD于點(diǎn)H.若AG=6,GH=2,則BC= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形紙片,,將其折疊使點(diǎn)與點(diǎn)重合,點(diǎn)的對(duì)應(yīng)點(diǎn)為點(diǎn),折痕為,那么和的長(zhǎng)分別為( )
A.4和B.4和C.5和D.5和
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,P是正方形ABCD的對(duì)角線BD上一點(diǎn),PE⊥BC于E,PF⊥CD于F,連接EF,給出下列三個(gè)結(jié)論:①AP=EF;②△APD一定是等腰三角形;③∠PFE=∠BAP.其中正確結(jié)論的序號(hào)是( )
A.①②B.①③C.②③D.①②③
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC與△CDE都是等邊三角形,點(diǎn)E、F分別在AC、BC上,且EF∥AB.
(1)求證:四邊形EFCD是菱形;
(2)設(shè)CD=2,求D、F兩點(diǎn)間的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】臨近期末,歷史老師為了了解所任教的甲、乙兩班學(xué)生的歷史基礎(chǔ)知識(shí)背誦情況,從甲、乙兩個(gè)班學(xué)生中分別隨機(jī)抽取了20名學(xué)生來(lái)進(jìn)行歷史基礎(chǔ)知識(shí)背誦檢測(cè),滿分50分,得到學(xué)生的分?jǐn)?shù)相關(guān)數(shù)據(jù)如下:
甲 | 32 | 35 | 46 | 23 | 41 | 49 | 37 | 41 | 36 | 41 |
37 | 44 | 39 | 46 | 46 | 41 | 50 | 43 | 44 | 49 |
乙 | 25 | 34 | 43 | 46 | 35 | 41 | 42 | 46 | 44 | 42 |
47 | 45 | 42 | 34 | 39 | 47 | 49 | 48 | 45 | 42 |
通過(guò)整理,分析數(shù)據(jù):兩組數(shù)據(jù)的平均數(shù)、中位數(shù)、眾數(shù)如下表:
平均數(shù)(分) | 中位數(shù)(分) | 眾數(shù)(分) | |
甲 | 41 | 41 | |
乙 | 41.8 | 42 |
歷史老師將乙班成績(jī)按分?jǐn)?shù)段(,,,,,表示分?jǐn)?shù))繪制成扇形統(tǒng)計(jì)圖,如圖(不完整)
請(qǐng)回答下列問(wèn)題:
(1)_______分;
(2)扇形統(tǒng)計(jì)圖中,所對(duì)應(yīng)的圓心角為________度;
(3)請(qǐng)結(jié)合以上數(shù)據(jù)說(shuō)明哪個(gè)班背誦情況更好(列舉兩條理由即可).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知:關(guān)于x的二次函數(shù)的圖象與x軸交于點(diǎn)A(1,0)和點(diǎn)B,與y軸交于點(diǎn)C(0,3),拋物線的對(duì)稱軸與x軸交于點(diǎn)D.
(1)求二次函數(shù)的表達(dá)式;
(2)在y軸上是否存在一點(diǎn)P,使△PBC為等腰三角形.若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);
(3)有一個(gè)點(diǎn)M從點(diǎn)A出發(fā),以每秒1個(gè)單位的速度在AB上向點(diǎn)B運(yùn)動(dòng),另一個(gè)點(diǎn)N從點(diǎn)D與點(diǎn)M同時(shí)出發(fā),以每秒2個(gè)單位的速度在拋物線的對(duì)稱軸上運(yùn)動(dòng),當(dāng)點(diǎn)M到 達(dá)點(diǎn)B時(shí),點(diǎn)M、N同時(shí)停止運(yùn)動(dòng),問(wèn)點(diǎn)M、N運(yùn)動(dòng)到何處時(shí),△MNB面積最大,試求出最大面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知,AB是⊙O的直徑,點(diǎn)P在AB的延長(zhǎng)線上,弦CE交AB于點(diǎn),連結(jié)OE,AC,且∠P=∠E,∠POE=2∠CAB.
(1)求證:CE⊥AB;
(2)求證:PC是⊙O的切線;
(3)若BD=2OD,且PB=9,求⊙O的半徑長(zhǎng)和tan∠P的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)如圖 1,在△ABC 中,∠ABC 的平分線 BF 交 AC 于 F, 過(guò)點(diǎn) F 作 DF∥BC, 求證:BD=DF.
(2)如圖 2,在△ABC 中,∠ABC 的平分線 BF 與∠ACB 的平分線 CF 相交于 F,過(guò)點(diǎn) F 作 DE∥BC,交直線 AB 于點(diǎn) D,交直線 AC 于點(diǎn) E.那么 BD,CE,DE 之間存在什么關(guān)系?并證明這種關(guān)系.
(3)如圖 3,在△ABC 中,∠ABC 的平分線 BF 與∠ACB 的外角平分線 CF 相交于 F,過(guò)點(diǎn) F 作 DE∥BC,交直線 AB 于點(diǎn)D,交直線 AC 于點(diǎn) E.那么 BD,CE,DE 之間存在什么關(guān)系?請(qǐng)寫出你的猜想.(不需證明)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com