【題目】如圖,在菱形ABCD中,∠A=110°,E,F分別是邊AB和BC的中點(diǎn),EP⊥CD于點(diǎn)P,則∠FPC=( )
A. 35°B. 45°C. 50°D. 55°
【答案】D
【解析】
延長(zhǎng)PF交AB的延長(zhǎng)線(xiàn)于點(diǎn)G.根據(jù)已知可得∠B,∠BEF,∠BFE的度數(shù),再根據(jù)余角的性質(zhì)可得到∠EPF的度數(shù),從而不難求得∠FPC的度數(shù).
解:延長(zhǎng)PF交AB的延長(zhǎng)線(xiàn)于點(diǎn)G.
在△BGF與△CPF中,
∴△BGF≌△CPF(ASA),
∴GF=PF,
∴F為PG中點(diǎn).
又∵由題可知,∠BEP=90°,
∴(直角三角形斜邊上的中線(xiàn)等于斜邊的一半),
∵(中點(diǎn)定義),
∴EF=PF,
∴∠FEP=∠EPF,
∵∠BEP=∠EPC=90°,
∴∠BEP﹣∠FEP=∠EPC﹣∠EPF,即∠BEF=∠FPC,
∵四邊形ABCD為菱形,
∴AB=BC,∠ABC=180°﹣∠A=70°,
∵E,F分別為AB,BC的中點(diǎn),
∴BE=BF,
易證FE=FG,
∴∠FGE=∠FEG=55°,
∵AG∥CD,
∴∠FPC=∠EGF=55°
故選:D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(2013年浙江義烏12分)如圖1,已知(x>)圖象上一點(diǎn)P,PA⊥x軸于點(diǎn)A(a,0),點(diǎn)B坐標(biāo)為(0,b)(b>0),動(dòng)點(diǎn)M是y軸正半軸上B點(diǎn)上方的點(diǎn),動(dòng)點(diǎn)N在射線(xiàn)AP上,過(guò)點(diǎn)B作AB的垂線(xiàn),交射線(xiàn)AP于點(diǎn)D,交直線(xiàn)MN于點(diǎn)Q,連結(jié)AQ,取AQ的中點(diǎn)為C.
(1)如圖2,連結(jié)BP,求△PAB的面積;
(2)當(dāng)點(diǎn)Q在線(xiàn)段BD上時(shí),若四邊形BQNC是菱形,面積為,求此時(shí)P點(diǎn)的坐標(biāo);
(3)當(dāng)點(diǎn)Q在射線(xiàn)BD上時(shí),且a=3,b=1,若以點(diǎn)B,C,N,Q為頂點(diǎn)的四邊形是平行四邊形,求這個(gè)平行四邊形的周長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線(xiàn)y=ax2+bx過(guò)A(﹣4,0),B(﹣1,3)兩點(diǎn),點(diǎn)C、B關(guān)于拋物線(xiàn)的對(duì)稱(chēng)軸對(duì)稱(chēng),過(guò)點(diǎn)B作直線(xiàn)BH⊥x軸,交x軸于點(diǎn)H.
(1)求拋物線(xiàn)的函數(shù)表達(dá)式;
(2)寫(xiě)出點(diǎn)C的坐標(biāo),并求出△ABC的面積;
(3)點(diǎn)P是拋物線(xiàn)上一動(dòng)點(diǎn),且位于x軸的下方,當(dāng)△ABP的面積為15時(shí),求出點(diǎn)P的坐標(biāo);
(4)若點(diǎn)M在直線(xiàn)BH上運(yùn)動(dòng),點(diǎn)N在x軸上運(yùn)動(dòng),當(dāng)以點(diǎn)C、M、N為頂點(diǎn)的三角形為等腰直角三角形時(shí),請(qǐng)直接寫(xiě)出此時(shí)點(diǎn)N的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn),的坐標(biāo)分別為,,現(xiàn)同時(shí)將點(diǎn),分別向上平移2個(gè)單位,再向右平移1個(gè)單位,分別得到點(diǎn),的對(duì)應(yīng)點(diǎn),,連接,,.
(1)求點(diǎn),的坐標(biāo)及四邊形的面積
(2)在軸上是否存在一點(diǎn),連接,,使,若存在這樣一點(diǎn),求出點(diǎn)的坐標(biāo),若不存在,試說(shuō)明理由.
(3)點(diǎn)是線(xiàn)段上的一個(gè)動(dòng)點(diǎn),連接,,當(dāng)點(diǎn)在上移動(dòng)時(shí)(不與,重合)給出下列結(jié)論:
①的值不變,② 的值不變,其中有且只有一個(gè)是正確的,請(qǐng)你找出這個(gè)結(jié)論并求其值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖 ,∠E=∠F=90°,∠B=∠C,AC=AB,給出下列結(jié)論:① ∠1=∠2;② BE=CF;③ △ACN≌△ABM;④ CD=DN,其中正確的結(jié)論有( )個(gè)
A.1B.2C.3D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某中學(xué)七年級(jí)同學(xué)到野外開(kāi)展數(shù)學(xué)綜合實(shí)踐活動(dòng),在營(yíng)地看到一池塘,同學(xué)們想知道池塘兩端的距離.有一位同學(xué)設(shè)計(jì)了如下測(cè)量方案:先在平地上取一個(gè)可直接到達(dá)A、B的點(diǎn)E(A、B為池塘的兩端),連接AE、BE并分別延長(zhǎng)AE至D,BE至C,使ED=AE,EC=EB,測(cè)出CD的長(zhǎng)作為AB之間的距離.
(1)他的方案可行嗎?請(qǐng)說(shuō)明理由.
(2)若測(cè)得CD=10m,則池塘兩端的距離是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我國(guó)西南五省市的部分地區(qū)發(fā)生嚴(yán)重旱災(zāi),為鼓勵(lì)節(jié)約用水,某市自來(lái)水公司采取分段收費(fèi)標(biāo)準(zhǔn),右圖反映的是每月收取水費(fèi)y(元)與用水量x(噸)之間的函數(shù)關(guān)系.
(1)小明家五月份用水8噸,應(yīng)交水費(fèi)______ 元;
(2)按上述分段收費(fèi)標(biāo)準(zhǔn),小明家三、四月份分別交水費(fèi)26元和18元,問(wèn)四月份比三月份節(jié)約用水多少?lài)崳?/span>
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為進(jìn)一步發(fā)展基礎(chǔ)教育,自2014年以來(lái),某縣加大了教育經(jīng)費(fèi)的投入,2014年該縣投入教育經(jīng)費(fèi)6000萬(wàn)元。2016年投入教育經(jīng)費(fèi)8640萬(wàn)元。假設(shè)該縣這兩年投入教育經(jīng)費(fèi)的年平均增長(zhǎng)率相同。
(1)求這兩年該縣投入教育經(jīng)費(fèi)的年平均增長(zhǎng)率;
(2)若該縣教育經(jīng)費(fèi)的投入還將保持相同的年平均增長(zhǎng)率,請(qǐng)你預(yù)算2017年該縣投入教育經(jīng)費(fèi)多少萬(wàn)元。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:點(diǎn)M,N,P在同一條直線(xiàn)上,線(xiàn)段MN=6,且線(xiàn)段PN=2.
(1)若點(diǎn)P在線(xiàn)段MN上,求MP的長(zhǎng);
(2)若點(diǎn)P在射線(xiàn)MN上,點(diǎn)A是MP的中點(diǎn),求線(xiàn)段AP的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com