【題目】我國西南五省市的部分地區(qū)發(fā)生嚴重旱災,為鼓勵節(jié)約用水,某市自來水公司采取分段收費標準,右圖反映的是每月收取水費y(元)與用水量x(噸)之間的函數(shù)關系.
(1)小明家五月份用水8噸,應交水費______ 元;
(2)按上述分段收費標準,小明家三、四月份分別交水費26元和18元,問四月份比三月份節(jié)約用水多少噸?
【答案】(1)16;(2)3.
【解析】試題分析:(1)直接根據(jù)圖象先求得10噸以內每噸水應繳20÷10=2元,再求小明家的水費;
(2)根據(jù)圖象求得10噸以上每噸3元,3月份交水費26元>20元,故水費按照超過10噸,每噸3元計算;四月份交水費18元<20元,故水費按照每噸2元計算,分別計算用水量.做差即可求出節(jié)約的水量.
試題解析:(1)根據(jù)圖象可知,10噸以內每噸水應繳20÷10=2元,所以8×2=16(元),
故答案為:16;
(2)由圖可得10噸內每噸2元,當y=18時,知x<10,
∴x=18×=9,
當x10時,可設y與x的關系為:y=kx+b,
由圖可知,當x=10時,y=20,x=20時y=50,可解得k=3,b=10,
∴y與x之間的函數(shù)關系式為:y=3x10,
∴當y=26時,知x>10,有26=3x10,解得x=12,
∴四月份比三月份節(jié)約用水:129=3(噸).
科目:初中數(shù)學 來源: 題型:
【題目】某高速鐵路工程指揮部,要對某路段工程進行招標,接到了甲、乙兩個工程隊的投標書.從投標書中得知:甲隊單獨完成這項工程所需天數(shù)是乙隊單獨完成這項工程所需天數(shù)的:若由甲隊先做20天,剩下的工程再由甲、乙兩隊合作60天完成.
(1)求甲、乙兩隊單獨完成這項工程各需多少天?
(2)已知甲隊每天的施工費用為8.6萬元,乙隊每天的施工費用為5.4萬元,工程預算的施工費用為1000萬元.若在甲、乙工程隊工作效率不變的情況下使施工時間最短,問擬安排預算的施工費用是否夠用?若不夠用,需追加預算多少萬元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一個多邊形的所有內角與它的一個外角之和是2018°,求這個外角的度數(shù)和它的邊數(shù).
【答案】38° ; 邊數(shù)13
【解析】試題分析:根據(jù)多邊形的內角和公式(n-2)180°可知,多邊形的內角和是180°的倍數(shù),然后列式求解即可.
試題解析:設多邊形的邊數(shù)是n,加的外角為α,則
(n-2)180°+α=2018°,
α=2378°-180°n,又0<α<180°,
即0<2378°-180°n<180°,
解得: <n<,
又n為正整數(shù),
可得n=13,
此時α=38°滿足條件,
答:這個外角的度數(shù)是38°,它的13邊形.
【點睛】本題考查了多邊形的內角和公式,利用好多邊形的內角和是180°的倍數(shù)是解題的關鍵.
【題型】解答題
【結束】
22
【題目】已知, 求 (1) ; (2) .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)填空21-20=2( ); 22-21=2( ) ;23 -22=2( )
(2)請用字母表示第n個等式,并驗證你的發(fā)現(xiàn).
(3)利用(2)中你的發(fā)現(xiàn),求20+21+22+23+…+22016+22017的值.
【答案】(1)0,1,2;(2)證明見解析;(3)
【解析】試題分析:(1)根據(jù)0次冪的意義和乘方的意義進行計算即可;
(2)觀察各等式得到2的相鄰兩個非負整數(shù)冪的差等于其中較小的2的非負整數(shù)冪,即2n-2n-1=2n-1(n為正整數(shù));
(3)由于21-20=20,22-21=21,23-22=22,…22018-22017=22017,然后把等式左邊與左邊相加,右邊與右邊相加即可求解.
試題解析:(1)21-20=1=20;22-21=2=21;23-22=4=22,
故答案為:0,1,2;
(2)觀察可得:2n-2n-1=2n-1(n為正整數(shù)),證明如下:
2n-2n-1=2×2n-1-2n-1=2n-1×(2-1)=2n-1;
(3)∵21-20=20,
22-21=21,
23-22=22,
…
22018-22017=22017,
∴22018-20=20+21+22+23+…+22016+22017,
∴20+21+22+23+…+22016+22017的值為22018-1.
【題型】解答題
【結束】
27
【題目】(1) 如圖1,MA1∥NA2,則∠A1+∠A2=_________度.
如圖2,MA1∥NA3,則∠A1+∠A2+∠A3=_________ 度.
如圖3,MA1∥NA4,則∠A1+∠A2+∠A3+∠A4=_________度.
如圖4,MA1∥NA5,則∠A1+∠A2+∠A3+∠A4+∠A5=_________度.
如圖5,MA1∥NAn,則∠A1+∠A2+∠A3+…+∠An=_________ 度.
(2) 如圖,已知AB∥CD,∠ABE和∠CDE的平分線相交于F,∠E=80°,求∠BFD的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某玩具廠有4個車間,某周是質量檢查周,現(xiàn)每個車間都原有a(a>0)個成品,且每個車間每天都生產(chǎn)b(b>0)個成品,質量科派出若干名檢驗員周一、周二檢驗其中兩個車間原有的和這兩天生產(chǎn)的所有成品,然后,周三到周五檢驗另外兩個車間原有的和本周生產(chǎn)的所有成品,假定每名檢驗員每天檢驗的成品數(shù)相同.
(1)這若干名檢驗員1天共檢驗多少個成品?(用含a、b的代數(shù)式表示)
(2)若一名檢驗員1天能檢驗b個成品,則質量科至少要派出多少名檢驗員?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】攀枝花芒果由于品質高、口感好而聞名全國,通過優(yōu)質快捷的網(wǎng)絡銷售渠道,小明的媽媽先購買了2箱A品種芒果和3箱B品種芒果,共花費450元;后又購買了l箱A品種芒果和2箱B品種芒果,共花費275元(每次兩種芒果的售價都不變).
(1)問A品種芒果和B品種芒果的售價分別是每箱多少元?
(2)現(xiàn)要購買兩種芒果共18箱,要求B品種芒果的數(shù)量不少于A品種芒果數(shù)量的2倍,但不超過A品種芒果數(shù)量的4倍,請你設計購買方案,并寫出所需費用最低的購買方案.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com