【題目】如圖,在△ABC中,∠C=90°,AD平分∠CAB,交CB于點(diǎn)D,過點(diǎn)D作DE⊥AB于點(diǎn)E.
(1)求證:△ACD≌△AED;
(2)若∠B=30°,CD=1,求BD的長(zhǎng).
【答案】
(1)證明:∵AD平分∠CAB,DE⊥AB,∠C=90°,
∴CD=ED,∠DEA=∠C=90°,
∵在Rt△ACD和Rt△AED中
∴Rt△ACD≌Rt△AED(HL)
(2)解:∵DC=DE=1,DE⊥AB,
∴∠DEB=90°,
∵∠B=30°,
∴BD=2DE=2
【解析】(1)根據(jù)角平分線性質(zhì)求出CD=DE,根據(jù)HL定理求出另三角形全等即可;(2)求出∠DEB=90°,DE=1,根據(jù)含30度角的直角三角形性質(zhì)求出即可.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用角平分線的性質(zhì)定理和含30度角的直角三角形的相關(guān)知識(shí)可以得到問題的答案,需要掌握定理1:在角的平分線上的點(diǎn)到這個(gè)角的兩邊的距離相等; 定理2:一個(gè)角的兩邊的距離相等的點(diǎn),在這個(gè)角的平分線上;在直角三角形中,如果一個(gè)銳角等于30°,那么它所對(duì)的直角邊等于斜邊的一半.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將二次函數(shù)y=2x2的圖像向上平移3個(gè)單位長(zhǎng)度,再向右平移2個(gè)單位長(zhǎng)度,得到的圖像所對(duì)應(yīng)的函數(shù)表達(dá)式為____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】隨著人們“節(jié)能環(huán)保,綠色出行”意識(shí)的增強(qiáng),越來越多的人喜歡騎自行車出行,也給自行車商家?guī)砩虣C(jī).某自行車行經(jīng)營(yíng)的A型自行車去年銷售總額為8萬(wàn)元.今年該型自行車每輛售價(jià)預(yù)計(jì)比去年降低200元.若該型車的銷售數(shù)量與去年相同,那么今年的銷售總額將比去年減少10%,求:
(1)A型自行車去年每輛售價(jià)多少元?
(2)該車行今年計(jì)劃新進(jìn)一批A型車和新款B型車共60輛,且B型車的進(jìn)貨數(shù)量不超過A型車數(shù)量的兩倍.已知,A型車和B型車的進(jìn)貨價(jià)格分別為1500元和1800元,計(jì)劃B型車銷售價(jià)格為2400元,應(yīng)如何組織進(jìn)貨才能使這批自行車銷售獲利最多?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,為了躲避臺(tái)風(fēng),一輪船一直由西向東航行,上午10點(diǎn),在A處測(cè)得小島P的方向是北偏東75°,以每小時(shí)15海里的速度繼續(xù)向東航行,中午12點(diǎn)到達(dá)B處,并測(cè)得小島P的方向是北偏東60°,若小島周圍25海里內(nèi)有暗礁,問該輪船是否能一直向東航行?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平面直角坐標(biāo)系中,矩形OABC的頂點(diǎn)B在第一象限,點(diǎn)C在x軸上,點(diǎn)A在y軸上,D、E分別是AB,OA中點(diǎn).過點(diǎn)D的雙曲線與BC交于點(diǎn)G.連接DC,F在DC上,且DF:FC=3:1,連接DE,EF.若△DEF的面積為6,則k的值為( 。
A. B. C. 6 D. 10
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系中,拋物線與軸交于兩點(diǎn)(點(diǎn)在點(diǎn)的左側(cè)),與軸交于點(diǎn),點(diǎn)的坐標(biāo)為,將直線沿軸向上平移4個(gè)單位長(zhǎng)度后恰好經(jīng)過兩點(diǎn)。
(1)求直線及拋物線的解析式;
(2)將直線沿軸向上平移5個(gè)單位長(zhǎng)度后與拋物線交于兩點(diǎn),若點(diǎn)是拋物線位于直線下方的一個(gè)動(dòng)點(diǎn),連接,交直線于點(diǎn),連接和。設(shè)的面積為,當(dāng)S取得最大值時(shí),求出此時(shí)點(diǎn)的坐標(biāo)及的最大值;
(3)如圖2,記(2)問中直線與軸交于點(diǎn),現(xiàn)有一點(diǎn)從點(diǎn)出發(fā),先沿軸到達(dá)點(diǎn),再沿到達(dá)點(diǎn),已知點(diǎn)在軸上運(yùn)動(dòng)的速度是每秒2個(gè)單位長(zhǎng)度,它在直線上運(yùn)動(dòng)速度是1個(gè)單位長(zhǎng)度,F(xiàn)要使點(diǎn)按照上述要求到達(dá)點(diǎn)所用的時(shí)間最短,請(qǐng)簡(jiǎn)述確定點(diǎn)位置的過程,求出點(diǎn)的坐標(biāo),不要求證明。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列長(zhǎng)度的三根木棒首尾相接,不能做成三角形框架的是( 。
A. 5、7、3 B. 7、13、10 C. 5、7、2 D. 5、10、6
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com