【題目】某學(xué)校為了增強(qiáng)學(xué)生體質(zhì),決定開設(shè)以下體育課外活動項目:A籃球、B乒乓球、C跳繩、D踢毽子,為了解學(xué)生最喜歡哪一種活動項目,隨機(jī)抽取了部分學(xué)生進(jìn)行調(diào)查,并將調(diào)查結(jié)果繪制成了兩幅不完整的統(tǒng)計圖,請回答下列問題:
(1)這次被調(diào)查的學(xué)生共有人;
(2)請你將條形統(tǒng)計圖補(bǔ)充完成;
(3)在平時的乒乓球項目訓(xùn)練中,甲、乙、丙、丁四人表現(xiàn)優(yōu)秀,現(xiàn)決定從這四名同學(xué)中任選兩名參加乒乓球比賽,求恰好選中甲、乙兩位同學(xué)的概率(用樹狀圖或列表法解答).

【答案】
(1)200
(2)解:C項目對應(yīng)人數(shù)為:200﹣20﹣80﹣40=60(人);

補(bǔ)充如圖.


(3)解:列表如下:

(乙,甲)

(丙,甲)

(丁,甲)

(甲,乙)

(丙,乙)

(丁,乙)

(甲,丙)

(乙,丙)

(丁,丙)

(甲,。

(乙,。

(丙,。

∵共有12種等可能的情況,恰好選中甲、乙兩位同學(xué)的有2種,

∴P(選中甲、乙)= =


【解析】解:(1)根據(jù)題意得:這次被調(diào)查的學(xué)生共有20÷ =200(人). 故答案為:200;
(1)由題意可知這次被調(diào)查的學(xué)生共有20÷ =200(人);(2)首先求得C項目對應(yīng)人數(shù)為:200﹣20﹣80﹣40=60(人),繼而可補(bǔ)全條形統(tǒng)計圖;(3)首先根據(jù)題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結(jié)果與恰好選中甲、乙兩位同學(xué)的情況,再利用概率公式即可求得答案.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2016年3月,我校舉辦了以“讀城記”為主題的校讀書節(jié)暨文化藝術(shù)節(jié),為了解初中學(xué)生更喜歡下列A、B、C、D哪個比賽,從初中學(xué)生隨機(jī)抽取了部分學(xué)生進(jìn)行調(diào)查,每個參與調(diào)查的學(xué)生只選擇最喜歡的一個項目,并把調(diào)查結(jié)果繪制了兩幅不完整的統(tǒng)計圖,請回答下列問題:
A.“尋找星主播”校園主持人大賽
B.“育才音超”校園歌手大賽
C.閱讀之星評選
D.“超級演說家”演講比賽
(1)這次被調(diào)查的學(xué)生共有人.請你將統(tǒng)計圖補(bǔ)充完整
(2)在此調(diào)查匯總,抽到了七年級(1)班3人.其中2人喜歡“育才音超”校園歌手大賽、1人喜歡閱讀之星評選.抽到八年級(5)班2人,其中1人喜歡“超級演說家”演講比賽、1人喜歡閱讀之星評選.從這5人中隨機(jī)選兩人.用列表或用樹狀圖求出兩人都喜歡閱讀之星評選的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角坐標(biāo)系xOy中,點A,B分別在x軸和y軸上, ,∠AOB的角平分線與OA的垂直平分線交于點C,與AB交于點D,反比例函數(shù)y= 的圖象過點C,若以CD為邊的正方形的面積等于 ,則k的值是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD為⊙O的內(nèi)接四邊形,且對角線AC為直徑,AD=BC,過點D作DG⊥AC,垂足為E,DG分別與AB及CB延長線交于點F、M.
(1)求證:四邊形ABCD是矩形;
(2)若點G為MF的中點,求證:BG是⊙O的切線;
(3)若AD=4,CM=9,求四邊形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列運算正確的是(
A. =±2
B. =﹣16
C.x6÷x3=x2
D.(2x23=8x6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,邊長為1的正方形ABCD,點M從點A出發(fā)以每秒1個單位長度的速度向點B運動,點N從點A出發(fā)以每秒3個單位長度的速度沿A→D→C→B的路徑向點B運動,當(dāng)一個點到達(dá)點B時,另一個點也隨之停止運動,設(shè)△AMN的面積為s,運動時間為t秒,則能大致反映s與t的函數(shù)關(guān)系的圖象是( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知⊙O的直徑AC與弦BD相交于點F,點E是DB延長線上的一點,∠EAB=∠ADB.

(1)求證:AE是⊙O的切線;
(2)已知點B是EF的中點,求證:△EAF∽△CBA.
(3)已知AF=4,CF=2,在(2)的條件下,求AE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,菱形ABCD的對角線AC、BD相交于點O,過點D作DE∥AC且DE= AC,連接AE交OD于點F,連接CE、OE.
(1)求證:OE=CD;
(2)若菱形ABCD的邊長為2,∠ABC=60°,求AE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖.Rt△ABC內(nèi)接于⊙O,BC為直徑,AB=4,AC=3,D是 的中點,CD與AB的交點為E,則 等于(
A.4
B.3.5
C.3
D.2.8

查看答案和解析>>

同步練習(xí)冊答案