【題目】如圖,菱形ABCD的對角線AC、BD相交于點(diǎn)O,過點(diǎn)D作DE∥AC且DE= AC,連接AE交OD于點(diǎn)F,連接CE、OE.
(1)求證:OE=CD;
(2)若菱形ABCD的邊長為2,∠ABC=60°,求AE的長.
【答案】
(1)證明:四邊形ABCD是菱形,
∴OA=OC= AC,AD=CD,
∵DE∥AC且DE= AC,
∴DE=OA=OC,
∴四邊形OADE、四邊形OCED都是平行四邊形,
∴OE=AD,
∴OE=CD;
(2)解:∵AC⊥BD,
∴四邊形OCED是矩形,
∵在菱形ABCD中,∠ABC=60°,
∴AC=AB=2,
∴在矩形OCED中,CE=OD= = .
∴在Rt△ACE中,AE= = .
【解析】(1)由菱形ABCD中,DE∥AC且DE= AC,易證得四邊形OCED是平行四邊形,繼而可得OE=CD即可;(2)由菱形的對角線互相垂直,可證得四邊形OCED是矩形,根據(jù)菱形的性質(zhì)得出AC=AB,再根據(jù)勾股定理得出AE的長度即可.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解菱形的性質(zhì)的相關(guān)知識,掌握菱形的四條邊都相等;菱形的對角線互相垂直,并且每一條對角線平分一組對角;菱形被兩條對角線分成四個(gè)全等的直角三角形;菱形的面積等于兩條對角線長的積的一半,以及對矩形的性質(zhì)的理解,了解矩形的四個(gè)角都是直角,矩形的對角線相等.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列運(yùn)算中,正確的是( )
A.3a+2b=5ab
B.2a3+3a2=5a5
C.3a2b﹣3ba2=0
D.5a2﹣4a2=1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】指出下列各式成立的條件:
(1)由mx<n,得x<;
(2)由a<b,得ma>mb;
(3)由a>-5,得a2≤-5a;
(4)由3x>4y,得3x-m>4y-m.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在四邊形ABCD中,AB∥CD,∠BCD=90°,AB=AD=10cm,BC=8cm,點(diǎn)P從點(diǎn)A出發(fā),沿折線ABCD方向以3cm/s的速度勻速運(yùn)動(dòng);點(diǎn)Q從點(diǎn)D出發(fā),沿線段DC方向以2cm/s的速度勻速運(yùn)動(dòng). 已知兩點(diǎn)同時(shí)出發(fā),當(dāng)一個(gè)點(diǎn)到達(dá)終點(diǎn)時(shí),另一點(diǎn)也停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t(s).
(1)求CD的長;
(2)當(dāng)四邊形PBQD為平行四邊形時(shí),求四邊形PBQD的周長;
(3)在點(diǎn)P、Q的運(yùn)動(dòng)過程中,是否存在某一時(shí)刻,使得△BPQ的面積為20cm2?若存在,請求出所有滿足條件的t的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在“植樹節(jié)”期間,小王、小李兩人想通過摸球的方式來決定誰去參加學(xué)校植樹活動(dòng),規(guī)則如下:在兩個(gè)盒子內(nèi)分別裝入標(biāo)有數(shù)字1,2,3,4的四個(gè)和標(biāo)有數(shù)字1,2,3的三個(gè)完全相同的小球,分別從兩個(gè)盒子中分摸出一個(gè)球,如果所摸出的球上的數(shù)字之和小于6,那么小王去,否則就是小李去.
(1)用樹狀圖或列表法求出小王去的概率;
(2)小李說:“這種規(guī)則不公平”,你認(rèn)同他的說法嗎?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,點(diǎn)G在對角線BD上(不與點(diǎn)B,D重合),GE⊥DC于點(diǎn)E,GF⊥BC于點(diǎn)F,連結(jié)AG.
(1)寫出線段AG,GE,GF長度之間的數(shù)量關(guān)系,并說明理由;
(2)若正方形ABCD的邊長為1,∠AGF=105°,求線段BG的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】用配方法解方程x2+10x+9=0,配方后可得( 。
A.(x+5)2=16
B.(x+5)2=1
C.(x+10)2=91
D.(x+10)2=109
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD,AB=6,點(diǎn)E在邊CD上,CE=2DE,將△ADE沿AE對折至△AFE,延長EF交邊BC于點(diǎn)G,連接AG、CF,下列結(jié)論:①△ABG≌△AFG;②BG=GC;③EG=DE+BG;④AG∥CF;⑤S△FCA=3.6,其中正確結(jié)論是_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com