【題目】如圖,拋物線y=﹣x2+bx+c交x軸于點A﹣3,0和點B,交y軸于點C0,3).

1求拋物線的函數(shù)表達(dá)式;

2若點P在拋物線上,且SAOP=4SBOC,求點P的坐標(biāo);

3如圖b,設(shè)點Q是線段AC上的一動點,作DQx軸,交拋物線于點D,求線段DQ長度的最大值

【答案】1y=x22x+32)(1,41+,41,4;3

【解析】

試題分析:1把A3,0,C0,3代入y=x2+bx+c,然后解方程組即可;2先求出點B的坐標(biāo)1,0,然后利用SAOP=4SBOC,求出點P的橫坐標(biāo),代入y=x22x+3即可求出縱坐標(biāo);3用待定系數(shù)法求成直線AC的解析式y(tǒng)=x+3,設(shè)出Q點坐標(biāo)為x,x+3,3x0,則D點坐標(biāo)為x,x22x+3,然后用x表示出線段DQ長度,利用配方法可確定其最大值

試題解析:1把A3,0,C0,3代入y=x2+bx+c,得

解得

故該拋物線的解析式為:y=x22x+3

21知,該拋物線的解析式為y=x22x+3,則易得B1,0).

SAOP=4SBOC

×3×|x22x+3|=4××1×3

整理,得x+12=0或x2+2x7=0,

解得x=1或x=1±

則符合條件的點P的坐標(biāo)為:1,41+,414;

3設(shè)直線AC的解析式為y=kx+t,將A3,0,C0,3代入,

,

解得

即直線AC的解析式為y=x+3

設(shè)Q點坐標(biāo)為x,x+3,3x0,則D點坐標(biāo)為x,x22x+3

QD=x22x+3x+3=x23x=x+2+,

當(dāng)x=時,QD有最大值

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算:102×98=______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AD平分∠BAC,AB=AC,連接BC,交AD于點E,下列說法正確的有( 。

①∠BAC=∠ACB;②S四邊形ABDC=ADCE;③AB2+CD2=AC2+BD2;④AB﹣BD=AC﹣CD.

A. 1個 B. 2個 C. 3個 D. 4個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系xOy中,直線MN分別與x軸正半軸、y軸正半軸交于點M、N,且OM=6cm,∠OMN=30°,等邊△ABC的頂點B與原點O重合,BC邊落在x軸的正半軸上,點A恰好落在線段MN上,如圖2,將等邊△ABC從圖1的位置沿x軸正方向以1cm/s的速度平移,邊AB、AC分別與線段MN交于點E、F,在△ABC平移的同時,點P從△ABC的頂點B出發(fā),以2cm/s的速度沿折線B→A→C運動,當(dāng)點P達(dá)到點C時,點P停止運動,△ABC也隨之停止平移.設(shè)△ABC平移時間為t(s),△PEF的面積為S(cm2).

(1)求等邊△ABC的邊長;

(2)當(dāng)點P在線段BA上運動時,求S與t的函數(shù)關(guān)系式,并寫出自變量t的取值范圍;

(3)點P沿折線B→A→C運動的過程中,是否在某一時刻,使△PEF為等腰三角形?若存在,求出此時t值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為響應(yīng)全民閱讀號召,某校在七年級800名學(xué)生中隨機抽取100名學(xué)生,對概念機學(xué)生在2015年全年閱讀中外名著的情況進(jìn)行調(diào)查,整理調(diào)查結(jié)果發(fā)現(xiàn),學(xué)生閱讀中外名著的本數(shù),最少的有5本,最多的有8本,并根據(jù)調(diào)查結(jié)果繪制了如圖所示的不完整的條形統(tǒng)計圖,其中閱讀了6本的人數(shù)占被調(diào)查人數(shù)的30%,根據(jù)圖中提供的信息,補全條形統(tǒng)計圖并估計該校七年級全體學(xué)生在2015年全年閱讀中外名著的總本數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】32×3.14+3×(﹣9.42)=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】李明準(zhǔn)備進(jìn)行如下操作試驗,把一根長40 cm的鐵絲剪成兩段并把每段首尾相連各圍成一個正方形

(1)要使這兩個正方形的面積之和等于58 cm2,李明應(yīng)該怎么剪這根鐵絲?

(2)李明認(rèn)為這兩個正方形的面積之和不可能等于48 cm2你認(rèn)為他的說法正確嗎?請說明理由

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知直線y=kx+6與x軸、y軸分別交于A,B兩點,且△ABO的面積為12.

(1)求k的值;

(2)若點P為直線AB上的一動點,P點運動到什么位置時,△PAO是以O(shè)A為底的等腰三角形?求出此時點P的坐標(biāo);

(3)在(2)的條件下,連接PO,△PBO是等腰三角形嗎?如果是,試說明理由;如果不是,請在線段AB上求一點C,使得△CBO是等腰三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列說法正確的是(
A.﹣1的相反數(shù)是1
B.﹣1的倒數(shù)是1
C.﹣1的平方根是1
D.﹣1的立方根是1

查看答案和解析>>

同步練習(xí)冊答案