【題目】如圖,在平行四邊形ABCD中,E、F分別為邊AB、CD的中點(diǎn),BD是對(duì)角線(xiàn).
(1)求證:△ADE≌△CBF;
(2)若∠ADB是直角,則四邊形BEDF是什么四邊形?證明你的結(jié)論.
【答案】
(1)證明:∵四邊形ABCD是平行四邊形,
∴AD=BC,AB=CD,∠A=∠C,
∵E、F分別為邊AB、CD的中點(diǎn),
∴AE= AB,CF= CD,
∴AE=CF,
在△ADE和△CBF中,
∵
,
∴△ADE≌△CBF(SAS)
(2)證明:若∠ADB是直角,則四邊形BEDF是菱形,理由如下:
解:由(1)可得BE=DF,
又∵AB∥CD,
∴BE∥DF,BE=DF,
∴四邊形BEDF是平行四邊形,
連接EF,在ABCD中,E、F分別為邊AB、CD的中點(diǎn),
∴DF∥AE,DF=AE,
∴四邊形AEFD是平行四邊形,
∴EF∥AD,
∵∠ADB是直角,
∴AD⊥BD,
∴EF⊥BD,
又∵四邊形BFDE是平行四邊形,
∴四邊形BFDE是菱形.
【解析】(1)由四邊形ABCD是平行四邊形,即可得AD=BC,AB=CD,∠A=∠C,又由E、F分別為邊AB、CD的中點(diǎn),可證得AE=CF,然后由SAS,即可判定△ADE≌△CBF;(2)先證明BE與DF平行且相等,然后根據(jù)一組對(duì)邊平行且相等的四邊形是平行四邊形,再連接EF,可以證明四邊形AEFD是平行四邊形,所以AD∥EF,又AD⊥BD,所以BD⊥EF,根據(jù)菱形的判定可以得到四邊形是菱形.
【考點(diǎn)精析】掌握平行四邊形的性質(zhì)和菱形的判定方法是解答本題的根本,需要知道平行四邊形的對(duì)邊相等且平行;平行四邊形的對(duì)角相等,鄰角互補(bǔ);平行四邊形的對(duì)角線(xiàn)互相平分;任意一個(gè)四邊形,四邊相等成菱形;四邊形的對(duì)角線(xiàn),垂直互分是菱形.已知平行四邊形,鄰邊相等叫菱形;兩對(duì)角線(xiàn)若垂直,順理成章為菱形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知二次函數(shù)y= x2﹣4的圖象與x軸交于A,B兩點(diǎn),與y軸交于點(diǎn)C,⊙C的半徑為 ,P為⊙C上一動(dòng)點(diǎn).
(1)點(diǎn)B,C的坐標(biāo)分別為B(),C();
(2)是否存在點(diǎn)P,使得△PBC為直角三角形?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;
(3)連接PB,若E為PB的中點(diǎn),連接OE,則OE的最大值= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,等腰直角三角形OAB的一條直角邊在y軸上,點(diǎn)P是邊AB上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)P的反比例函數(shù)y= 的圖象交斜邊OB于點(diǎn)Q,
(1)當(dāng)Q為OB中點(diǎn)時(shí),AP:PB=
(2)若P為AB的三等分點(diǎn),當(dāng)△AOQ的面積為 時(shí),k的值為
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖AB是⊙O的直徑,∠A=30°,延長(zhǎng)OB到D使BD=OB.
(1)△OBC是否是等邊三角形?說(shuō)明理由;
(2)求證:DC是⊙O的切線(xiàn).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】圖中是拋物線(xiàn)拱橋,P處有一照明燈,水面OA寬4m,從O、A兩處觀測(cè)P處,仰角分別為α、β,且tanα= ,tan ,以O(shè)為原點(diǎn),OA所在直線(xiàn)為x軸建立直角坐標(biāo)系.
(1)求點(diǎn)P的坐標(biāo);
(2)水面上升1m,水面寬多少( 取1.41,結(jié)果精確到0.1m)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在正方形ABCD中,對(duì)角線(xiàn)AC、BD交于點(diǎn)O,動(dòng)點(diǎn)P在線(xiàn)段BC上(不含點(diǎn)B),∠BPE= ∠ACB,PE交BO于點(diǎn)E,過(guò)點(diǎn)B作BF⊥PE,垂足為F,交AC于點(diǎn)G.
(1)當(dāng)點(diǎn)P與點(diǎn)C重合時(shí)(如圖①),求證:△BOG≌△POE;
(2)通過(guò)觀察、測(cè)量、猜想: = ,并結(jié)合圖②證明你的猜想;
(3)把正方形ABCD改為菱形,其他條件不變(如圖③),若∠ACB=α,求 的值.(用含α的式子表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在Rt△ABC中,∠ACB=90°,AC=1,BC= ,點(diǎn)O為Rt△ABC內(nèi)一點(diǎn),連接AO、BO、CO,且∠AOC=∠COB=∠BOA=120°,則OA+OB+OC= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,反比例函數(shù)y= 的圖象與一次函數(shù)y=k2x+b的圖象交于點(diǎn)P(m,﹣1)和Q(1,2)兩點(diǎn),記一次函數(shù)與坐標(biāo)軸的交點(diǎn)分別為A,B,連接OP,OQ.
(1)求兩函數(shù)的解析式;
(2)求證:△POB≌△QOA.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】聯(lián)華商場(chǎng)以150元/臺(tái)的價(jià)格購(gòu)進(jìn)某款電風(fēng)扇若干臺(tái),很快售完.商場(chǎng)用相同的貨款再次購(gòu)進(jìn)這款電風(fēng)扇,因價(jià)格提高30元,進(jìn)貨量減少了10臺(tái).
(1)這兩次各購(gòu)進(jìn)電風(fēng)扇多少臺(tái)?
(2)商場(chǎng)以250元/臺(tái)的售價(jià)賣(mài)完這兩批電風(fēng)扇,商場(chǎng)獲利多少元?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com