【題目】如圖,點P是AOB外的一點,點M,N分別是AOB兩邊上的點,點P關(guān)于OA的對稱點Q恰好落在線段MN上,點P關(guān)于OB的對稱點R落在MN的延長線上.若PM=3cm,PN=4cm,MN=4.5cm,則線段QR的長為( )

A.4.5 B.5.5 C.6.5 D.7

【答案】B

【解析】

試題分析:根據(jù)軸對稱的性質(zhì)得到OA垂直平分PQ,OB垂直平分PR,則利用線段垂直平分線的性質(zhì)得QM=PM=3cm,RN=PN=4cm,然后計算QN,再計算QN+EN即可.

解:點P關(guān)于OA的對稱點Q恰好落在線段MN上,

OA垂直平分PQ,

QM=PM=3cm,

QN=MN﹣QM=4.5cm﹣3cm=1.5cm,

點P關(guān)于OB的對稱點R落在MN的延長線上,

OB垂直平分PR,

RN=PN=4cm,

QR=QN+RN=1.5cm+4cm=5.5cm

故選B.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】已知如圖,在數(shù)軸上有A,B兩點,所表示的數(shù)分別為-10,4,點A以每秒5個單位長度的速度向右運動,同時點B以每秒3個單位長度的速度也向左運動,如果設(shè)運動時間為t秒,解答下列問題:

1)運動前線段AB的長為 ; 運動1秒后線段AB的長為 ;
2)運動t秒后,點A,點B運動的距離分別為 ;用t表示A,B分別為
3)求t為何值時,點A與點B恰好重合;
4)在上述運動的過程中,是否存在某一時刻t,使得線段AB的長為6,若存在,求t的值; 若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知AB兩點在數(shù)軸上,點A表示的數(shù)為-10,OB=3OA,點M以每秒3個單位長度的速度從點A向右運動.點N以每秒2個單位長度的速度從點O向右運動(點M、點N同時出發(fā))

1)數(shù)軸上點B對應的數(shù)是______

2)經(jīng)過幾秒,點M、點N分別到原點O的距離相等?

3)當點M運動到什么位置時,恰好使AM=2BN?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】用若干等長的木棒按如圖的方式擺放.

填寫下表:

圖形編號

木棒根數(shù)

7

12

______

______

______

搭第n個圖形需要多少根木棒?

搭第幾個圖形需要2017根木棒?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在△ABC中,∠ABC=∠ACB,點DBC邊所在的直線上,點E在射線AC上,且始終保持∠ADE=∠AED.

1)如圖1,若∠B=∠C=30°,∠BAD=70°,求∠CDE的度數(shù);

2)如圖2,若∠ABC=∠ACB=70°,∠CDE=15°,求∠BAD的度數(shù);

3)如圖3,當點DBC邊的延長線上時,猜想BAD與∠CDE的數(shù)量關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】觀察下列兩個等式:,,給出定義如下:我們稱使等式成立的一對有理數(shù)理想有理數(shù)對,記為,如:數(shù)對都是理想有理數(shù)對”.

1)數(shù)對、中是理想有理數(shù)對的是______

2)若理想有理數(shù)對,求a的值;

3)若理想有理數(shù)對,則______“理想有理數(shù)對(填、不是不確定);

4)請再寫出一對符合條件的理想有理數(shù)對”.(不能與題目中已有的數(shù)對重復).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,二次函數(shù)的圖象經(jīng)過A(2,0)B(0,-6)兩點.

1求這個二次函數(shù)的解析式;

2設(shè)該二次函數(shù)的對稱軸與x軸交于點C,連接BA,BC,求ABC的面積.

3x軸上是否存在一點P,使ABP為等腰三角形,若存在,求出P的坐標,若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知拋物線y=ax2+bx+c(a≠0)的對稱軸為直線x=﹣1,且拋物線經(jīng)過A(1,0),C(0,3)兩點,與x軸交于點B.

(1)若直線y=mx+n經(jīng)過B、C兩點,求直線BC和拋物線的解析式;

(2)在拋物線的對稱軸x=﹣1上找一點M,使點M到點A的距離與到點C的距離之和最小,求出點M的坐標;

(3)設(shè)點P為拋物線的對稱軸x=﹣1上的一個動點,求使BPC為直角三角形的點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】若數(shù)a使關(guān)于x的分式方程的解為正數(shù),且使關(guān)于y的不等式組的解集為y<﹣2,則符合條件的所有整數(shù)a的和為(  )

A. 10B. 12C. 14D. 16

查看答案和解析>>

同步練習冊答案