【題目】如圖1所示,在△ABC中,∠ACB為銳角,點(diǎn)D為射線BC上一動(dòng)點(diǎn),連接AD,以AD為直角邊,A為直角頂點(diǎn),在AD左側(cè)作等腰直角三角形ADF,連接CF,AB=AC,∠BAC=90°.
(1)當(dāng)點(diǎn)D在線段BC上時(shí)(不與點(diǎn)B重合),線段CF和BD的數(shù)量關(guān)系與位置關(guān)系分別是什么?請(qǐng)給予證明.
(2)當(dāng)點(diǎn)D在線段BC的延長(zhǎng)線上時(shí),(1)的結(jié)論是否仍然成立?請(qǐng)?jiān)趫D2中畫出相應(yīng)的圖形,并說(shuō)明理由.
【答案】(1)CF=BD,且CF⊥BD,證明見解析;(2)(1)的結(jié)論仍然成立,理由見解析.
【解析】
(1)根據(jù)同角的余角相等求出∠CAF=∠BAD,然后利用“邊角邊”證明△ACF和△ABD全等,根據(jù)全等三角形對(duì)應(yīng)邊相等可得CF=BD,全等三角形對(duì)應(yīng)角相等可得∠ACF=∠B,然后求出∠BCF=90°,從而得到CF⊥BD;
(2)先求出∠CAF=∠BAD,然后與①的思路相同求解即可;
解:(1)CF=BD,且CF⊥BD,證明如下:
∵∠FAD=∠CAB=90°,
∴∠FAC=∠DAB.
在△ACF和△ABD中,
,
∴△ACF≌△ABD
∴CF=BD,∠FCA=∠DBA,
∴∠FCD=∠FCA+∠ACD=∠DBA+∠ACD=90°,
∴FC⊥CB,
故CF=BD,且CF⊥BD.
(2)(1)的結(jié)論仍然成立,如圖2,
∵∠CAB=∠DAF=90°,
∴∠CAB+∠CAD=∠DAF+∠CAD,
即∠CAF=∠BAD,
在△ACF和△ABD中,
,
∴△ACF≌△ABD,
∴CF=BD,∠ACF=∠B,
∵AB=AC,∠BAC=90°,
∴∠B=∠ACB=45°,
∴∠BCF=∠ACF+∠ACB=45°+45°=90°,
∴CF⊥BD;
∴CF=BD,且CF⊥BD.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在等腰直角三角形ABC中,∠BAC=90°,AC=8 cm,AD⊥BC于點(diǎn)D.點(diǎn)P從點(diǎn)A出發(fā),沿A→C方向以 cm/s的速度運(yùn)動(dòng)到點(diǎn)C停止.在運(yùn)動(dòng)過(guò)程中,過(guò)點(diǎn)P作PQ∥AB交BC于點(diǎn)Q,以線段PQ為邊作等腰直角三角形PQM,且∠PQM=90°(點(diǎn)M,C位于PQ異側(cè)).設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為x(s),△PQM與△ADC重疊部分的面積為y(cm2)
(1)當(dāng)點(diǎn)M落在AB上時(shí),求x的值;
(2)當(dāng)點(diǎn)M落在AD上時(shí),PM與CD之間的數(shù)量關(guān)系是 , 此時(shí)x的值是;
(3)求y關(guān)于x的函數(shù)解析式,并寫出自變量x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知關(guān)于x的二次函數(shù)y=(x﹣h)2+3,當(dāng)1≤x≤3時(shí),函數(shù)有最小值2h,則h的值為( )
A.
B. 或2
C. 或6
D.2、 或6
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,OP為∠AOB的平分線,PC⊥OA,PD⊥OB,垂足分別是C,D,E為OP上一點(diǎn),則下列結(jié)論錯(cuò)誤的是( )
A. CE=DEB. ∠CPO=∠DEPC. ∠CEO=∠DEOD. OC=OD
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在正六邊形ABCDEF中,N、M為邊上的點(diǎn),BM、AN相交于點(diǎn)P
(1)如圖1,若點(diǎn)N在邊BC上,點(diǎn)M在邊DC上,BN=CM,求證:BPBM=BNBC;
(2)如圖2,若N為邊DC的中點(diǎn),M在邊ED上,AM∥BN,求 的值;
(3)如圖3,若N、M分別為邊BC、EF的中點(diǎn),正六邊形ABCDEF的邊長(zhǎng)為2,請(qǐng)直接寫出AP的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,Rt△ABC中,AB⊥BC,AB=6,BC=4,P是△ABC內(nèi)部的一個(gè)動(dòng)點(diǎn),且滿足∠PAB=∠PBC,則線段CP長(zhǎng)的最小值為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四邊形ABCD中,對(duì)角線AC平分∠DAB,∠ABD=52°,∠ABC=116°,∠ACB=α°,則∠BDC的度數(shù)為( )
A. α B. C. 90﹣α D. 90﹣
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,AC=BC,D是△ABC外一點(diǎn),連接AD、BD、CD,若∠CDB=90°,BD=3,AD= ,則AC長(zhǎng)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】作圖題:(只保留作圖痕跡)如圖,在方格紙中,有兩條線段AB、BC.利用方格紙完成以下操作:
(1)過(guò)點(diǎn)A作BC的平行線;
(2)過(guò)點(diǎn)C作AB的平行線,與(1)中的平行線交于點(diǎn)D;
(3)過(guò)點(diǎn)B作AB的垂線.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com