如圖,拋物線y=ax2+bx(a>0)與雙曲線y=
k
x
相交于點(diǎn)A,B.已知點(diǎn)B的坐標(biāo)為(-2,-2),點(diǎn)A在第一象限內(nèi),且tan∠AOx=4.過(guò)點(diǎn)A作直線ACx軸,交拋物線于另一點(diǎn)C.
(1)求雙曲線和拋物線的解析式;
(2)計(jì)算△ABC的面積.
(1)把點(diǎn)B的坐標(biāo)為(-2,-2)代入y=
k
x
,得:k=4,
則反比例函數(shù)的解析式是:y=
4
x
;
設(shè)A的橫坐標(biāo)是m,
∵tan∠AOx=4,
∴A的縱坐標(biāo)是:4m,
把A(m,4m)代入y=
4
x
得:m=1或-1(舍去),
故A的坐標(biāo)是(1,4),
把A、B的坐標(biāo)代入y=ax2+bx,得:
a+b=4
4a-2b=-2

解得:
a=1
b=3
,
則拋物線的解析式是:y=x2+3x;

(2)在y=x2+3x中,令y=4,解得:x=1或-4,
則C的坐標(biāo)是(-4,4).
則AC=5,
又∵B的坐標(biāo)為(-2,-2),
∴△ABC中BC邊上的高是:6,
∴S△ABC=
1
2
×5×6=15.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知:如圖,拋物線y=-
3
3
x2+mx+
3
與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C,A點(diǎn)坐標(biāo)為(-1,0)
(1)求m的值和點(diǎn)B的坐標(biāo);
(2)過(guò)A、B、C的三點(diǎn)的⊙M交y軸于另一點(diǎn)D,設(shè)P為弧CBD上的動(dòng)點(diǎn)P(P不與C、D重合),連接AP交y軸于點(diǎn)H,問(wèn)是否存在一個(gè)常數(shù)k,始終滿足AH•AP=k?如果存在,請(qǐng)求出常數(shù)k;如果不存在,請(qǐng)說(shuō)明理由;
(3)連接DM并延長(zhǎng)交BC于N,交⊙M于點(diǎn)E,過(guò)E點(diǎn)的⊙M的切線分別交x軸、y軸于點(diǎn)F、G,試探究BC與FG的位置關(guān)系,并求直線FG的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系中,以點(diǎn)A(3,0)為圓心,以5為半徑的圓與x軸相交于B、C,與y軸相交于點(diǎn)D、E.若拋物線y=
1
4
x2+bx+c
經(jīng)過(guò)C、D兩點(diǎn),求拋物線的解析式,并判斷點(diǎn)B是否在拋物線上.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

某商場(chǎng)試銷(xiāo)一種成本為每件60元的服裝,規(guī)定試銷(xiāo)期間銷(xiāo)售單價(jià)不低于成本單價(jià),且獲利不得高于40%.經(jīng)試銷(xiāo)發(fā)現(xiàn),銷(xiāo)售量y(件)與銷(xiāo)售單價(jià)x(元)符合一次函數(shù)y=kx+b,且x=80時(shí),y=40;x=70時(shí),y=50.
(1)求一次函數(shù)y=kx+b的表達(dá)式;
(2)若該商場(chǎng)獲得利潤(rùn)為W元,試寫(xiě)出利潤(rùn)W與銷(xiāo)售單價(jià)x之間的關(guān)系式;銷(xiāo)售單價(jià)定為多少元時(shí),商場(chǎng)可獲得最大利潤(rùn),最大利潤(rùn)是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在平面直角坐標(biāo)系內(nèi),反比例函數(shù)和二次函數(shù)y=k(x2+x-1)的圖象交于點(diǎn)A(1,k)和點(diǎn)B(-1,-k).
(1)當(dāng)k=-2時(shí),求反比例函數(shù)的解析式;
(2)要使反比例函數(shù)和二次函數(shù)都是y隨著x的增大而增大,求k應(yīng)滿足的條件以及x的取值范圍;
(3)設(shè)二次函數(shù)的圖象的頂點(diǎn)為Q,當(dāng)△ABQ是以AB為斜邊的直角三角形時(shí),求k的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

拋物線的圖象經(jīng)過(guò)(0,3),(-2,-5)和(1,4)三點(diǎn),則它的解析式為_(kāi)_____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知拋物線y=x2+(2m-1)x+m2-1(m為常數(shù)).
(1)當(dāng)該拋物線經(jīng)過(guò)坐標(biāo)原點(diǎn),并且頂點(diǎn)在第四象限時(shí),求出它所對(duì)應(yīng)的函數(shù)關(guān)系式;
(2)設(shè)(1)中的拋物線與x軸的另一個(gè)交點(diǎn)為Q,拋物線的頂點(diǎn)為P,試求經(jīng)過(guò)O、P、Q三點(diǎn)的圓的圓心O′的坐標(biāo);
(3)設(shè)A是(1)所確定的拋物線上位于x軸下方、且在對(duì)稱軸左側(cè)的一個(gè)動(dòng)點(diǎn),過(guò)A作x軸的平行線,交拋物線于另一點(diǎn)D,再作AB⊥x軸于B,DC⊥x軸于C,
①當(dāng)BC=1時(shí),求矩形ABCD的周長(zhǎng);
②試問(wèn)矩形ABCD的周長(zhǎng)是否存在最大值?如果存在,請(qǐng)求出這個(gè)最大值,并指出此時(shí)A點(diǎn)的坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

某瓜果基地市場(chǎng)部為指導(dǎo)某地某種蔬菜的生產(chǎn)和銷(xiāo)售,在對(duì)歷年市場(chǎng)行情和生產(chǎn)情況進(jìn)行了調(diào)查的基礎(chǔ)上,對(duì)今年這種蔬菜上市后的市場(chǎng)售價(jià)和生產(chǎn)成本進(jìn)行了預(yù)測(cè),提供了兩個(gè)方面的信息.如圖甲、乙兩圖.
注:兩圖中的每個(gè)實(shí)心黑點(diǎn)所對(duì)應(yīng)的縱坐標(biāo)分別指相應(yīng)月份的售價(jià)和成本,生產(chǎn)成本6月份最低;圖甲的圖象是線段,圖乙的圖象是拋物線.
(1)在3月份出售這種蔬菜,每千克的收益(收益=售價(jià)-成本)是多少元
(2)設(shè)x月份出售這種蔬菜,每千克收益為y元,求y關(guān)于x的函數(shù)解析式;
(3)問(wèn)哪個(gè)月出售這種蔬菜,每千克的收益最大?簡(jiǎn)單說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,在平面直角坐標(biāo)系中,二次函數(shù)y=ax2+mc(a≠0)的圖象經(jīng)過(guò)正方形ABOC的三個(gè)頂點(diǎn),且ac=-2,則m的值為( 。
A.1B.-1C.2D.-2

查看答案和解析>>

同步練習(xí)冊(cè)答案