【題目】RtABC中,∠ACB=90°,點D與點BAC同側(cè),∠DAC>∠BAC,且DA=DC,過點BBEDADC于點E,過EEMACAB于點M,連結(jié)MD.

1)當ADC=80°時,求∠CBE的度數(shù).

2)當ADC=α:

①求證:BE=CE.

②求證:ADM=CDM.

③當α為多少度時,DM=EM.

【答案】(1)40°;(2)①見解析,②見解析,③60°

【解析】

1)根據(jù)等腰三角形的性質(zhì)可得∠ACD的度數(shù),根據(jù)∠ACB=90°可求出∠BCE的度數(shù),根據(jù)AD//BE可得∠BED=ADC=80°,根據(jù)三角形外角性質(zhì)即可求出∠CBE的度數(shù);(2)①由等腰三角形的性質(zhì)可得∠ACD=90°-,根據(jù)∠ACB=90°可得∠BCE=,根據(jù)平行線性質(zhì)可得∠BED=ADC=,利用外角性質(zhì)可求出∠CBE=,即可證明∠BCE=CBE,進而可證明BE=CE;②延長EMADF,由EMAC可得,進而可得DF=DE,AF=EC=BE,根據(jù)AAS可證明AFMBEM,可得FM=EM.,根據(jù)等腰三角形三線合一即可證明∠ADM=CDM;③由②可得DMEM,由可知tanDEM=,可得∠DEM=60°,即可求出∠EDM=30°,進而可得=ADC=2EDM=60°.

1)∵AD=CD,∠ADC=80°,

∴∠ACD=180°-80°=50°,

∵∠ACB=90°

∴∠BCE=90°-50°=40°,

AD//BE,

∴∠BED=ADC=80°,

∴∠CBE=BED-BCE=80°-40°=40°.

2)①,,

AD=CD,

∴∠ACD=180°-=90°-,

∵∠ACB=90°

∴∠BCE=90°-ACD= ,

∴∠CBE=BED-BCE= ,

∴∠CBE=BCE,

BE=CE.

②延長EMADF

,

,

AF=EC=BE

BE//AD,

∴∠FAM=EBM,∠AFM=BEM,

∴△AFMBEM

FM=EM.

∴根據(jù)三線合一性可得∠ADM=CDM

③∵DF=DE,FM=EM,

DMEM

DM=EM.

tanDEM==,

∴∠DEM=60°,

∴∠EDM=30°,

=ADC=2EDM=60°.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】鄂州某個體商戶購進某種電子產(chǎn)品的進價是50元/個,根據(jù)市場調(diào)研發(fā)現(xiàn)售價是80元/個時,每周可賣出160個,若銷售單價每個降低2元,則每周可多賣出20個.設(shè)銷售價格每個降低x元(x為偶數(shù)),每周銷售量為y個.
(1)直接寫出銷售量y個與降價x元之間的函數(shù)關(guān)系式;
(2)設(shè)商戶每周獲得的利潤為W元,當銷售單價定為多少元時,每周銷售利潤最大,最大利潤是多少元?
(3)若商戶計劃下周利潤不低于5200元的情況下,他至少要準備多少元進貨成本?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,Rt△AOB的直角邊OA在x軸上,OA=2,AB=1,將Rt△AOB繞點O逆時針旋轉(zhuǎn)90°得到Rt△COD,拋物線y=﹣ x2+bx+c經(jīng)過B、D兩點.

(1)求二次函數(shù)的解析式;
(2)連接BD,點P是拋物線上一點,直線OP把△BOD的周長分成相等的兩部分,求點P的坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:△AOB和△COD均為等腰直角三角形,∠AOB=∠COD=90°.連接AD,BC,點H為BC中點,連接OH.

(1)如圖1所示,易證:OH= AD且OH⊥AD(不需證明)
(2)將△COD繞點O旋轉(zhuǎn)到圖2,圖3所示位置時,線段OH與AD又有怎樣的關(guān)系,并選擇一個圖形證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】學(xué)校為統(tǒng)籌安排大課間體育活動,在各班隨機選取了一部分學(xué)生,分成四類活動:“籃球”、“羽毛球”、“乒乓球”、“其他”進行調(diào)查,整理收集到的數(shù)據(jù),繪制成如下的兩幅統(tǒng)計圖.

(1)學(xué)校采用的調(diào)查方式是;學(xué)校共選取了名學(xué)生;
(2)補全統(tǒng)計圖中的數(shù)據(jù):條形統(tǒng)計圖中羽毛球人、乒乓球人、其他人、扇形統(tǒng)計圖中其他 %;
(3)該校共有1200名學(xué)生,請估計喜歡“乒乓球”的學(xué)生人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,長方形OABC中,O為平面直角坐標系的原點,A點的坐標為(4,0),C點的坐標為(0,3),點B在第一象限內(nèi),點P從原點出發(fā),以每秒2個單位長度的速度沿著OCBAO的路線移動(即:沿著長方形移動一周).

1)直接寫出B點的坐標;

2)當點P移動了3秒時,請直接寫出點P的坐標;

3)在移動過程中,當點Px軸距離為2個單位長度時,求點P移動的時間.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】先填寫表,通過觀察后再回答問題:

a

0

0.0001

0.01

1

100

10000

0

0.01

x

1

y

100

1)表格中x   y   ;

2)從表格中探究a數(shù)位變化可以發(fā)現(xiàn):當被開方數(shù)a每擴大100倍時,擴大_________倍,請你利用這個規(guī)律解決下面兩個問題:

①已知,則   

②已,若,用含m的代數(shù)式表示n,則n   ;

3)請根據(jù)表格提示,試比較a的大。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC,AB=AC,∠BAC=120°,DBC的中點,DE⊥ABE,求EB:EA的值

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明在暑期社會實踐活動中,以每千克0.8元的價格從批發(fā)市場購進若干千克西瓜到市場上去銷售,在銷售了40千克西瓜之后,余下的每千克降價0.4元,全部售完.銷售金額與售出西瓜的千克數(shù)之間的關(guān)系如圖所示.請你根據(jù)圖象提供的信息完成以下問題:

(1)求降價前銷售金額y()與售出西瓜x(千克)之間的函數(shù)關(guān)系式.

(2)小明從批發(fā)市場共購進多少千克西瓜?

(3)小明這次賣瓜賺了多少錢?

查看答案和解析>>

同步練習(xí)冊答案