【題目】ABC中,AB=ACDBC的中點(diǎn),以AC為腰向外作等腰直角ACE,∠EAC=90°,連接BE,交AD于點(diǎn)F,交AC于點(diǎn)G

1)若∠BAC=50°,求∠AEB的度數(shù);

2)求證:∠AEB=ACF;

3)試判斷線段EFBFAC三者之間的等量關(guān)系,并證明你的結(jié)論.

【答案】120°;(2)證明見(jiàn)解析;(3EF2+BF2=2AC2.理由見(jiàn)解析.

【解析】

1)根據(jù)等腰直角三角形的旋轉(zhuǎn)得出∠ABE=AEB,求出∠BAE,根據(jù)三角形內(nèi)角和定理求出即可;

2)根據(jù)等腰三角形的性質(zhì)得出∠BAF=CAF,根據(jù)SAS推出BAF≌△CAF,根據(jù)全等得出∠ABF=ACF,即可得出答案;

3)根據(jù)全等得出BF=CF,求出∠CFG=EAG=90°,根據(jù)勾股定理求出EF2+BF2=EF2+CF2=EC2,EC2=AC2+AE2=2AC2,即可得出答案.

1)∵AB=AC,ACE是等腰直角三角形,

AB=AE,

∴∠ABE=AEB,

又∵∠BAC=50°,∠EAC=90°,

∴∠BAE=50°+90°=140°

∴∠AEB=180°-140°÷2=20°;

2)∵AB=AC,DBC的中點(diǎn),

∴∠BAF=CAF

BAFCAF

,

∴△BAF≌△CAFSAS),

∴∠ABF=ACF,

∵∠ABE=AEB,

∴∠AEB=ACF;

3)∵△BAF≌△CAF,

BF=CF,

∵∠AEB=ACF,∠AGE=FGC,

∴∠CFG=EAG=90°

EF2+BF2=EF2+CF2=EC2,

∵△ACE是等腰直角三角形,

∴∠CAE=90°,AC=AE,

EC2=AC2+AE2=2AC2,

EF2+BF2=2AC2

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC 中,∠BAC=120°,點(diǎn) D BC 上一點(diǎn),BD 的垂直平分線交 AB 于點(diǎn)E,將△ACD 沿 AD 折疊,點(diǎn) C 恰好與點(diǎn) E 重合,則∠B 等于_______°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知,平分,平分,則下列結(jié)論中:

;②平分;③;④,正確的有(  )

A.1個(gè)B.個(gè)C.3個(gè)D.個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】路橋方林汽車城某4S店銷售某種型號(hào)的汽車,每輛車的進(jìn)貨價(jià)為15萬(wàn)元,市場(chǎng)調(diào)研表明:當(dāng)銷售價(jià)為21萬(wàn)元時(shí),平均每周能售出6輛,而當(dāng)銷售價(jià)每降低0.5萬(wàn)元時(shí),平均每周能多售出3輛,如果設(shè)每輛汽車降價(jià)x萬(wàn)元,平均每周的銷售利潤(rùn)為W萬(wàn)元

(1)該4S店要想平均周獲得72萬(wàn)元的銷售利潤(rùn),并且要盡可能地讓利于顧客,則每輛汽車的定價(jià)應(yīng)為多少萬(wàn)元?

(2)試寫(xiě)出W與x之間的函數(shù)關(guān)系式,并說(shuō)明當(dāng)每輛汽車的定價(jià)為多少萬(wàn)元時(shí),平均每周的銷售利潤(rùn)最大?最大利潤(rùn)是多少萬(wàn)元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,我們把橫、縱坐標(biāo)都是整數(shù)的點(diǎn)叫做整點(diǎn).如圖,已知⊙O的半徑為5,則拋物線與該圓所圍成的陰影部分(不包括邊界)的整點(diǎn)個(gè)數(shù)是(

A. 24 B. 23 C. 22 D. 21

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】等邊三角形ABC 中,BD是角平分線,點(diǎn)EBC邊的延長(zhǎng)線上,且CD=CE,則∠BDE的度數(shù)是(

A.90°B.100°C.120°D.無(wú)法確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】請(qǐng)解答下列各題:

1)數(shù)軸上表示的兩點(diǎn)之間的距離表示為_______,如果,那么_______

2)若點(diǎn)表示的整數(shù)為,則當(dāng)________時(shí),

3)要使取最小值時(shí),相應(yīng)的的取值范圍是________,最小值是________

4)已知,則的最大值為_______,最小值為_______

5)若,則的取值范圍是_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖22,將—矩形OABC放在直角坐際系中,O為坐標(biāo)原點(diǎn).點(diǎn)A在x軸正半軸上.點(diǎn)E是邊AB上的—個(gè)動(dòng)點(diǎn)(不與點(diǎn)A、N重合),過(guò)點(diǎn)E的反比例函數(shù)的圖象與邊BC交于點(diǎn)F。

1若△OAE、△OCF的而積分別為S1、S2.且S1+S2=2,求的值:

2若OA=2.0C=4.問(wèn)當(dāng)點(diǎn)E運(yùn)動(dòng)到什么位置時(shí),四邊形OAEF的面積最大.其最大值為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】1)閱讀理解:課外興趣小組活動(dòng)時(shí),老師提出了如下問(wèn)題:

在△ABC中,AB9,AC5,求BC邊上的中線AD的取值范圍。

小明在組內(nèi)經(jīng)過(guò)合作交流,得到了如下的解決方法(如圖1):

①延長(zhǎng)ADQ,使得DQAD;

②再連接BQ,把AB、AC、2AD集中在△ABQ中;

③利用三角形的三邊關(guān)系可得4<AQ<14,則AD的取值范圍是_____________

感悟:解題時(shí),條件中若出現(xiàn)“中點(diǎn)”“中線”等條件,可以考慮倍長(zhǎng)中線,構(gòu)造全等三角形,把分散的己知條件和所求證的結(jié)論集中到同一個(gè)三角形中。

2)請(qǐng)你寫(xiě)出圖1ACBQ的位置關(guān)系并證明。

3)思考:已知,如圖2,AD是△ABC的中線,ABAEACAF,∠BAE=∠FAC90°。試探究線段ADEF的數(shù)量和位置關(guān)系并加以證明。

查看答案和解析>>

同步練習(xí)冊(cè)答案