【題目】如圖,在四邊形ABCD中,對角線ACBD相交于點O,不能判斷四邊形ABCD是平行四邊形的是(  )

A.AB=DC,AD=BCB.ABDC,ADBC

C.ABDC,AD=BCD.OA=OC,OB=OD

【答案】C

【解析】

根據(jù)平行四邊形的判定定理進行判斷即可.

解:A.根據(jù)兩組對邊分別相等的四邊形是平行四邊形可判定四邊形ABCD為平行四邊形,故此選項不符合題意;

B.根據(jù)兩組對邊分別平行的四邊形是平行四邊形可判定四邊形ABCD為平行四邊形,故此選項不符合題意;

C一組對邊平行,另一組對邊相等是四邊形也可能是等腰梯形,故本選項符合題意;

D.根據(jù)對角線互相平分的四邊形是平行四邊形可判定四邊形ABCD為平行四邊形,故此選項不符合題意.

故選:C

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】A,B兩點在數(shù)軸上如圖所示,其中O為原點,點A對應(yīng)的有理數(shù)為a,點B對應(yīng)的有理數(shù)為b,且點A距離原點6個單位長度,ab滿足b-|a|=2.

(1)a=______;b=______;

(2)動點P從點A出發(fā),以每秒2個單位長度的速度向右運動,設(shè)運動時間為t秒(t>0)

①當(dāng)PO=2PB時,求點P的運動時間t

②當(dāng)PB=6時,求t的值:

(3)當(dāng)點P運動到線段OB上時,分別取APOB的中點E、F,則的值是否為一個定值?如果是,求出定值,如果不是,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=ax2+bx+c的圖象如下,則一次函數(shù)y=ax﹣2b與反比例函數(shù)y= 在同一平面直角坐標(biāo)系中的圖象大致是( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】平面直角坐標(biāo)系中,已知點A0,10),點Pm,10),連接AP、OP,將AOP沿直線OP翻折得到EOP(點A的對應(yīng)點為點E).若點Ex軸的距離不大于6,則m的取值范圍是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線yax+bx軸于點A,交y軸于點B,且ab滿足a+4,直線ykx4k過定點C,點D為直線ykx4k上一點,∠DAB45°

1a   ,b   ,C坐標(biāo)為   ;

2)如圖1,k=﹣1時,求點D的坐標(biāo);

3)如圖2,在(2)的條件下,點M是直線ykx4k上一點,連接AM,將AMA順時針旋轉(zhuǎn)90°AQOQ最小值為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=AC=26cm,BC=20cm,DAB的中點,過DDEACE,則DE的長為____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線y=ax2+bx+c(a≠0)的對稱軸為直線x=﹣1,且經(jīng)A(1,0)、B(0,﹣3)兩點.

(1)求拋物線的解析式;
(2)在拋物線的對稱軸x=﹣1上,是否存在點M,使它到點A的距離與到點B的距離之和最小,如果存在求出點M的坐標(biāo),如果不存在請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個鋼筋三角架三邊長分別為20cm,50cm,60cm,現(xiàn)要再做一個與其相似的鋼筋三角架,而只有長為30cm50cm的兩根鋼筋,要求以其中的一根為一邊,從另一根截下兩段(允許有余料)作為另兩邊,則不同的截法有( ).

A. 一種 B. 兩種 C. 三種 D. 四種

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】射擊隊為從甲、乙兩名運動員中選拔一人參加比賽,對他們進行了六次測試,測試成績?nèi)缦卤恚▎挝唬涵h(huán)):

第一次

第二次

第三次

第四次

第五次

第六次

平均成績

中位數(shù)

10

8

9

8

10

9

9

10

7

10

10

9

8

9.5

(注:方差公式 .)
(1)完成表中填空①;②;
(2)請計算甲六次測試成績的方差;
(3)若乙六次測試成績的方差為 ,你認(rèn)為推薦誰參加比賽更合適,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案