【題目】如圖,已知一條直線經(jīng)過(guò)點(diǎn)A(0,2)、點(diǎn)B(1,0),將這條直線向左平移與x軸、y軸分別交與點(diǎn)C、點(diǎn)D.若DB=DC,則直線CD的函數(shù)解析式為_____

【答案】y=-2x-2

【解析】

先求出直線AB的解析式,再根據(jù)平移的性質(zhì)求直線CD的解析式.

解:設(shè)直線AB的解析式為y=kx+b,
A02)、點(diǎn)B1,0)代入,得

,
解得 ,
故直線AB的解析式為y=-2x+2
將這直線向左平移與x軸負(fù)半軸、y軸負(fù)半軸分別交于點(diǎn)C、點(diǎn)D,使DB=DC,
DO垂直平分BC,
OC=OB,

∴點(diǎn)C的坐標(biāo)為(-1,0),
∵平移后的圖形與原圖形平行,

∴設(shè)直線CD的解析式為y=-2x+c

-2×-1+c=0,
解得c=-2,
∴平移以后的函數(shù)解析式為:y=-2x-2
故答案為:y=-2x-2

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,∠AOB是平角,OM、ON分別是∠AOC、∠BOD的平分線.

1)當(dāng)∠BOC=140°時(shí),求∠AOM的度數(shù);

2)當(dāng)∠AOC=30°,∠BOD=60°時(shí),求∠MON的度數(shù);

3)當(dāng)∠COD=x度時(shí),則∠MON=________.(請(qǐng)直接寫(xiě)出答案)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形ABCD中,點(diǎn)E在邊AD上,將此矩形沿CE折疊,點(diǎn)D落在點(diǎn)F處,連接BF,B、FE三點(diǎn)恰好在一直線上.

(1)求證:△BEC為等腰三角形;(2)若AB=2,∠ABE=45°,求矩形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,A.B兩地之間有一條河,原來(lái)從A地到B地需要經(jīng)過(guò)橋DC,沿折線A→D→C→B到達(dá)B地,現(xiàn)在新建了橋EF,可直接沿直線ABA地到達(dá)B地.BC=1000m,A=45°,B=37°.橋DCAB平行,則現(xiàn)在從A地到達(dá)B地可比原來(lái)少走多少路程?(結(jié)果精確到1m.參考數(shù)據(jù):,sin37°≈0.60,cos37°≈0.80)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】騎共享單車(chē)已成為人們喜愛(ài)的一種綠色出行方式.已知A、B、C三家公司的共享單車(chē)都是按騎車(chē)時(shí)間收費(fèi),標(biāo)準(zhǔn)如下:

公司

單價(jià)(元/半小時(shí))

充值優(yōu)惠

A

m

充20元送5元,即:充20元實(shí)得25元

B

m-0.2

無(wú)

C

1

充20元送20元,即:充20元實(shí)得40元

(注:使用這三家公司的共享單車(chē),不足半小時(shí)均按半小時(shí)計(jì)費(fèi).用戶的賬戶余額長(zhǎng)期有效,但不可提現(xiàn).)

4月初,李明注冊(cè)成了A公司的用戶,張紅注冊(cè)成了B公司的用戶,并且兩人在各自賬戶上分別充值20元.一個(gè)月下來(lái),李明、張紅兩人使用單車(chē)的次數(shù)恰好相同,且每次都在半小時(shí)以內(nèi),結(jié)果到月底李明、張紅的賬戶余額分別顯示為5元、8元.

(1)求m的值;

(2)5月份,C公司在原標(biāo)準(zhǔn)的基礎(chǔ)上又推出新優(yōu)惠:每月的月初給用戶送出5張免費(fèi)使用券(1

次用車(chē)只能使用1張券).如果王磊每月使用單車(chē)的次數(shù)相同,且在30次以內(nèi),每次用車(chē)都不超過(guò)

半小時(shí). 若要在這三家公司中選擇一家并充值20元,僅從資費(fèi)角度考慮,請(qǐng)你幫他作出選擇,并說(shuō)

明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC是等邊三角形,點(diǎn)D、E分別在BC、AC上,且BD=CE,ADBE相交于點(diǎn)F.

(1)試說(shuō)明△ABD≌△BCE;

(2)△EAF△EBA相似嗎?說(shuō)說(shuō)你的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公司購(gòu)買(mǎi)了一批型芯片,其中型芯片的單價(jià)比型芯片的單價(jià)少9元,已知該公司用3120元購(gòu)買(mǎi)型芯片的條數(shù)與用4200元購(gòu)買(mǎi)型芯片的條數(shù)相等.

(1)求該公司購(gòu)買(mǎi)的、型芯片的單價(jià)各是多少元?

(2)若兩種芯片共購(gòu)買(mǎi)了200條,且購(gòu)買(mǎi)的總費(fèi)用為6280元,求購(gòu)買(mǎi)了多少條型芯片?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(1)一個(gè)兩位數(shù)A,十位數(shù)字為a,個(gè)位數(shù)字為b,交換ab的位置,得到一個(gè)新的兩位數(shù)B,A+B一定能被______整除,A-B一定能被______整除;

(2)一個(gè)三位數(shù)M,百位數(shù)字為a,十位數(shù)字為b,個(gè)位數(shù)字為ca,b,c均為19的整數(shù)),交換ac的位置,得到一個(gè)新的三位數(shù)N.請(qǐng)用含a、b、c的式子分別表示數(shù)NM-N;

(3) (2)ab1,MN792,M.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某工廠計(jì)劃生產(chǎn)兩種產(chǎn)品共60件,需購(gòu)買(mǎi)甲、乙兩種材料.生產(chǎn)一件產(chǎn)品需甲種材料4千克;生產(chǎn)一件產(chǎn)品需甲、乙兩種材料各3千克.經(jīng)測(cè)算,購(gòu)買(mǎi)甲、乙兩種材料各1千克共需資金60元;購(gòu)買(mǎi)甲種材料2千克和乙種材料3千克共需資金155.

1)甲、乙兩種材料每千克分別是多少元?

2)現(xiàn)工廠用于購(gòu)買(mǎi)甲、乙兩種材料的資金不超過(guò)9900元,且生產(chǎn)產(chǎn)品不少于38件,問(wèn)符合生產(chǎn)條件的生產(chǎn)方案有哪幾種?

3)在(2)的條件下,若生產(chǎn)一件產(chǎn)品需加工費(fèi)40元,生產(chǎn)一件產(chǎn)品需加工費(fèi)50元,應(yīng)選擇哪種生產(chǎn)方案,使生產(chǎn)這60件產(chǎn)品的成本最低(成本=材料費(fèi)+加工費(fèi))?

查看答案和解析>>

同步練習(xí)冊(cè)答案