【題目】王老師在公園道一號(hào)購(gòu)買了一套經(jīng)濟(jì)適用房,他準(zhǔn)備將地面鋪上地磚,地面結(jié)構(gòu)如圖所示,根據(jù)圖中的數(shù)據(jù)(單位:m),解答下列問(wèn)題:
(1)用含x的代數(shù)式表示地面總面積
(2)當(dāng)x=3時(shí),若鋪1m2地磚的平均費(fèi)用為100元, 那么王老師要將全部地面鋪地磚,總費(fèi)用為多少元?
【答案】(1)(x2+7x+12)m2;(2)鋪地磚的總費(fèi)用為:3900(元).
【解析】
(1)根據(jù)圖示分別表示出客廳、廚房、臥室、衛(wèi)生間的面積,再求和即可;
(2)根據(jù)x的值計(jì)算出(1)中代數(shù)式的值,進(jìn)而得到總面積,然后再計(jì)算總費(fèi)用即可.
解:(1)由已知,得地面總面積:
6x+x(2+ x)+2(6-x)+×x=(x2+7x+12)m2;
(2)當(dāng)x=3時(shí),地面總面積:x2+7x+12=×32+7×3+12=6+21+12=39,
∵鋪1m2地磚的平均費(fèi)用為100元,
∴鋪地磚的總費(fèi)用為:39×100=3900(元).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)y=ax2﹣2ax﹣1(a是常數(shù),a≠0),下列結(jié)論正確的是( )
A.當(dāng)a=1時(shí),函數(shù)圖象過(guò)點(diǎn)(﹣1,1)
B.當(dāng)a=﹣2時(shí),函數(shù)圖象與x軸沒(méi)有交點(diǎn)
C.若a>0,則當(dāng)x≥1時(shí),y隨x的增大而減小
D.若a<0,則當(dāng)x≤1時(shí),y隨x的增大而增大
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了鼓勵(lì)市民節(jié)約用水,某市水費(fèi)實(shí)行分段計(jì)費(fèi)制,每戶每月用水量在規(guī)定用量及以下的部分收費(fèi)標(biāo)準(zhǔn)相同,超出規(guī)定用量的部分收費(fèi)標(biāo)準(zhǔn)相同.例如:若規(guī)定用量為10噸,每月用水量不超過(guò)10噸按1.5元/噸收費(fèi),超出10噸的部分按2元/噸收費(fèi),則某戶居民一個(gè)月用水8噸,則應(yīng)繳水費(fèi):8×1.5=12(元);某戶居民一個(gè)月用水13噸,則應(yīng)繳水費(fèi):10×1.5+(13﹣10)×2=21(元).
表是小明家1至4月份用水量和繳納水費(fèi)情況,根據(jù)表格提供的數(shù)據(jù),回答:
月份 | 一 | 二 | 三 | 四 |
用水量(噸) | 6 | 7 | 12 | 15 |
水費(fèi)(元) | 12 | 14 | 28 | 37 |
(1)該市規(guī)定用水量為 噸,規(guī)定用量?jī)?nèi)的收費(fèi)標(biāo)準(zhǔn)是 元/噸,超過(guò)部分的收費(fèi)標(biāo)準(zhǔn)是 元/噸.
(2)若小明家五月份用水20噸,則應(yīng)繳水費(fèi) 元.
(3)若小明家六月份應(yīng)繳水費(fèi)46元,則六月份他們家的用水量是多少噸?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系中,矩形 ABCO,B點(diǎn)坐標(biāo)為(4,3),拋物線y=
經(jīng)過(guò)矩形ABCO的頂點(diǎn) B 、C ,D為BC的中點(diǎn),直線 AD y軸交 E點(diǎn),與拋物線 交于第四象限的 F點(diǎn).
(1)求該拋物線解析式與F點(diǎn)坐標(biāo);
(2)如圖2,動(dòng)點(diǎn)P從點(diǎn)C出發(fā),沿線段 CB以每秒1個(gè)單位長(zhǎng)度的速度向終點(diǎn)B運(yùn)動(dòng);同時(shí),動(dòng)點(diǎn)M從 A出發(fā),沿線 AE以每秒 個(gè)單位長(zhǎng)度的速度向終點(diǎn)E運(yùn)動(dòng).過(guò)點(diǎn)P作PH ⊥OA,垂足為H ,連接 MP ,MH .設(shè)點(diǎn) P 的運(yùn)動(dòng)時(shí)間 t秒.
①問(wèn)EP+ PH+ HF是否有最小值?如果有,求出t的值;如果沒(méi)有,請(qǐng)說(shuō)明理由.
②若△PMH是等腰三角形,請(qǐng)直接寫出此時(shí)t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知直線y= x﹣3與x軸、y軸分別交于A、B兩點(diǎn),P在以C(0,1)為圓心,1為半徑的圓上一動(dòng)點(diǎn),連結(jié)PA、PB,則△PAB面積的最大值是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】推理填空
如圖:∠ABC=∠ACB,BD平分∠ABC,CE平分∠ACB,∠DBF=∠F,求證:CE∥DF.請(qǐng)完成下面的解題過(guò)程.
解:∵BD平分∠ABC,CE平分∠ACB ( 已知 )
∴∠DBC=∠_____,∠ECB=∠_____ ( 角平分線的定義)
又∵∠ABC=∠ACB (已知)
∴∠_____=∠_____.
又∵∠_____=∠_____ (已知)
∴∠F=∠_____
∴CE∥DF_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知∠DCE=90°,∠DAC=90°,BE⊥AC于B,且DC=EC.
(1)∠D和∠ECB相等嗎?若相等,請(qǐng)說(shuō)明理由;
(2)△ADC≌△BCE嗎?若全等,請(qǐng)說(shuō)明理由;
(3)能否找到與AB+AD相等的線段,并說(shuō)明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y=x2+bx+c經(jīng)過(guò)坐標(biāo)原點(diǎn),并與x軸交于點(diǎn)A(2,0).
(1)求此拋物線的解析式;
(2)寫出頂點(diǎn)坐標(biāo)及對(duì)稱軸;
(3)若拋物線上有一點(diǎn)B,且S△OAB=3,求點(diǎn)B的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,BC⊥AF于點(diǎn)C,∠A+∠1=90°.
(1)求證:AB∥DE;
(2)如圖2,點(diǎn)P從點(diǎn)A出發(fā),沿線段AF運(yùn)動(dòng)到點(diǎn)F停止,連接PB,PE.則∠ABP,∠DEP,∠BPE三個(gè)角之間具有怎樣的數(shù)量關(guān)系(不考慮點(diǎn)P與點(diǎn)A,D,C重合的情況)?并說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com