如圖,正方形ABCD中,對角線AC=10,M是AB上任意一點(diǎn),由M點(diǎn)作ME⊥OA,MF⊥OB,垂足分別為E、F點(diǎn),則ME+MF的值為
A.20B.10
C.15D.5
D
已知正方形ABCD中,對角線AC=10,M是AB上任意一點(diǎn),由M點(diǎn)作ME⊥OA,MF⊥OB,
∴四邊形EMFO為矩形,∴MF=OE,
∴∠BAC=∠ABD,ME∥BD,
∴∠AME=∠ABD=∠BAC,
∴ME=AE,
∴ME+MF=AE+OE=AO,
又正方形ABCD中,對角線AC=10,
∴ME+MF=AO=AC=×10=5.
故選D.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知:如圖,梯形ABCD中,DC∥AB,AD=BC,對角線AC、BD交于點(diǎn)O,∠COD=60°,若CD=3,
AB=8,求梯形ABCD的高.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

(12分)如圖,點(diǎn)E是正方形ABCD的邊DC上一點(diǎn),把△ADE順時(shí)針旋轉(zhuǎn)△ABF的位置.
小題1:(1)旋轉(zhuǎn)中心是點(diǎn)     ,旋轉(zhuǎn)角度是     度;
小題2:(2)若連結(jié)EF,則△AEF是       三角形;
小題3:(3)若四邊形AECF的面積為25,DE=2,求AE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分10分)如圖,在平行四邊形ABCD中,E、F分別為邊AB、CD的中點(diǎn),BD是對角線,過A點(diǎn)作AG∥DB交CB的延長線于點(diǎn)G.

小題1:(1)求證:DE∥BF;
小題2:(2)若∠G=90,求證四邊形DEBF是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

圖形的操作過程如下(本題中四個(gè)矩形的水平方向的邊長均為a,豎直方向的邊長均為b)在圖①中,將線段A1A2向右平移1個(gè)單位長度到B1B2,得到封閉圖形A1A2B2B1(即陰影部分);在圖②中,將折線A1A2A3(其中A2叫做折線A1A2A3的一個(gè)“折點(diǎn)”)向右平移1個(gè)單位長度到B1B2B3,得到封閉圖形A1A2A2B3B2B1(即陰影部分)

小題1:(1)在圖③中,請你類似地畫一條有兩個(gè)折點(diǎn)的折線,同樣向右平移1個(gè)單位長度,從而得到一個(gè)封閉圖形,并用斜線畫出陰影部分.
小題2:(2)分別求出①,②,③三個(gè)圖形中除去陰影部分后剩余部分的面積.
小題3:(3)聯(lián)想與探索:如圖④所示,在一塊矩形草地上,有一條彎曲的柏油小路(小路的水平寬度是1個(gè)單位長度),請你猜想空白部分的草地面積是多少?并說明你的猜想是正確的.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,在直角坐標(biāo)系中,A點(diǎn)、B點(diǎn)坐標(biāo)分別為(2,0),(0,1),要使四邊形BOAC為矩形,則C點(diǎn)坐標(biāo)為 .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,n+1個(gè)上底、兩腰長皆為1,下底長為2的等腰梯形的下底均在同一直線上,設(shè)四邊形P1M1N1N2面積為S1,四邊形P2M2N2N3的面積為S2,……,四邊形PnMnNnNn+1的面積記為Sn,則Sn=              

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖所示,在矩形ABCD中,對角線AC、BD相交于O,OE⊥AC于O交BC于E,連接AE。若AB=1,AD= ,則AE=                                             ( )

A.              B.             C.                 D.2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,梯形ABCD中,對角線AC與BD交于點(diǎn)O,則圖中面積相等的三角形有(   ).
A.3對B.2對C.1對D.4對

查看答案和解析>>

同步練習(xí)冊答案