【題目】如圖,AB是⊙O的直徑,點C為⊙O上一點,AE和過點C的切線互相垂直,垂足為E,AE交⊙O于點D,直線EC交AB的延長線于點P,連接AC、BC.
(1)求證:AC平分∠BAD.
(2)求證:.
【答案】(1)證明見解析(2)證明見解析
【解析】
(1)連接OC,如圖,利用切線的性質得到OC⊥PE,則判斷OC∥AE,所以∠EAC=∠ACO,然后利用∠OCA=∠OAC得到∠EAC=∠OAC;
(2)利用圓周角定理得到∠ACB=90°,再證明△ACP∽△CBP即可得出結論.
(1)如圖所示,連接OC,
∵CP是⊙O的切線,
∴OC⊥CE;
又AE⊥CE,
∴OC∥AD,
∴∠EAC=∠ACO,
∵OC=OA,
∴∠CAO=∠ACO,
∴∠EAC=∠CAO,即AC平分∠DAB.
(2)∵AB為⊙O的直徑,
∴∠BCA=90°
∴∠ACO+∠OCB=90°,
∵CP是⊙O的切線,
∴∠BCP+∠OCB=90°,
∴∠ACO=∠BCP
∵∠P=∠P
∴△ACP∽△CBP
∴
科目:初中數(shù)學 來源: 題型:
【題目】拋物線y=ax2+bx+c(a>0)經(jīng)過點A(-3,0)、B(,0),它與y軸相交于點C,且∠ACB≥90°,設該拋物線的頂點為D,△BCD的邊CD上的高為h.
(1)求實數(shù)a的取值范圍;
(2)求高h的取值范圍;
(3)當(1)的實數(shù)a取得最大值時,求此時△BCD外接圓的半徑.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在 11×16 的網(wǎng)格圖中,△ABC 三個頂點坐標分別為 A(﹣4,0),B(﹣1,1),C(﹣2,3).
(1)請畫出△ABC 沿x 軸正方向平移4個單位長度所得到的△A1B1C1;
(2)以原點O為位似中心,將(1)中的△A1B1C1 放大為原來的3倍得到△A2B2C2,請在第一象限內畫出△A2B2C2,并直接寫出△A2B2C2 三個頂點的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖①,兩同心圓的圓心為O,大圓的弦AB與小圓相切于點P,已知兩圓的半徑分別為2和1.
(1)用陰影部分的扇形圍成一個圓錐(OA與OB重合),求該圓錐的底面半徑.
(2)用余下部分再圍成一個圓錐(如圖②所示),若一只小蟲從A點出發(fā),繞圓錐的側面爬行一周后又回到A點,求小蟲爬行的最短路線的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在 ABCD 中,AE、BF 分別平分∠DAB 和∠ABC,交 CD 于點 E、F,AE、BF 相交于點 M.
(1)求證:AE⊥BF;
(2)判斷線段 DF 與 CE 的大小關系,并予以證明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖為二次函數(shù)y=ax2+bx+c的圖象,在下列說法中:①ac<0;②方程ax2+bx+c=0的根是x1=﹣1,x2=3;③a+b+c<0;④當x>1時,y隨x的增大而減;⑤2a﹣b=0;⑥b2﹣4ac>0.下列結論一定成立的是( )
A. ①②④⑥ B. ①②③⑥ C. ②③④⑤⑥ D. ①②③④
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,在△ABC中,AB=AC,以BC為直徑的半圓O與邊AB相交于點D,切線DE⊥AC,垂足為點E.
求證:(1)△ABC是等邊三角形;
(2).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】△ABC在平面直角坐標系xOy中的位置如圖所示.
(1)作△ABC關于點C成中心對稱的△A1B1C1.
(2)將△A1B1C1向右平移4個單位,作出平移后的△A2B2C2.
(3)在x軸上求作一點P,使PA1+PC2的值最小,并寫出點P的坐標(不寫解答過程,直接寫出結果)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點A,B,C都在拋物線y=ax2﹣2amx+am2+2m﹣5(其中﹣<a<0)上,AB∥x軸,∠ABC=135°,且AB=4.
(1)填空:拋物線的頂點坐標為 (用含m的代數(shù)式表示);
(2)求△ABC的面積(用含a的代數(shù)式表示);
(3)若△ABC的面積為2,當2m﹣5≤x≤2m﹣2時,y的最大值為2,求m的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com