【題目】命題“直徑所對的圓周角是直角”的逆命題是

【答案】90°圓周角所對的弦是直徑
【解析】解:命題“直徑所對的圓周角是直角”的逆命題是90°圓周角所對的弦是直徑,
故答案為:90°圓周角所對的弦是直徑.
交換命題的題設(shè)和結(jié)論即可確定該命題的逆命題.本題考查了命題與定理的知識,解題的關(guān)鍵是能夠了解如何寫出一個命題的逆命題,難度不大.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】通信市場競爭日益激烈,某通信公司的手機市話費標準按原標準每分鐘降低a元后,再次下調(diào)了20%,現(xiàn)在收費標準是每分鐘b元,則原收費標準每分鐘是元.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(10分)將一副三角尺如圖拼接:含30°角的三角尺(△ABC)的長直角邊與含45°角的三角尺(△ACD)的斜邊恰好重合.已知AB=2,PAC上的一個動點.

(1)當點P運動到∠ABC的平分線上時,連接DP,求DP的長;

(2)當點P在運動過程中出現(xiàn)PDBC時,求此時∠PDA的度數(shù);

(3)當點P運動到什么位置時,以D,P,BQ為頂點的平行四邊形的頂點Q恰好在邊BC上?求出此時□DPBQ的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】根據(jù)題意解答
(1)如圖1的圖形我們把它稱為“8字形”,請說明∠A+∠B=∠C+∠D.
(2)閱讀下面的內(nèi)容,并解決后面的問題: 如圖2,AP、CP分別平分∠BAD、∠BCD,若∠ABC=36°,∠ADC=16°,求∠P的度數(shù).
解:∵AP、CP分別平分∠BAD、∠BCD
∴∠1=∠2,∠3=∠4
由(1)的結(jié)論得:
①+②,得2∠P+∠2+∠3=∠1+∠4+∠B+∠D
∴∠P= (∠B+∠D)=26°.
①如圖3,直線AP平分∠BAD的外角∠FAD,CP平分∠BCD的外角∠BCE,若∠ABC=36°,∠ADC=16°,請猜想∠P的度數(shù),并說明理由.
②在圖4中,直線AP平分∠BAD的外角∠FAD,CP平分∠BCD的外角∠BCE,猜想∠P與∠B、∠D的關(guān)系,直接寫出結(jié)論,無需說明理由.
③在圖5中,AP平分∠BAD,CP平分∠BCD的外角∠BCE,猜想∠P與∠B、∠D的關(guān)系,直接寫出結(jié)論,無需說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】完成證明,說明理由. 已知:如圖,點D在BC邊上,DE、AB交于點F,AC∥DE,∠1=∠2,∠3=∠4.
求證:AE∥BC.
證明:∵AC∥DE(已知),
∴∠4=
∵∠3=∠4(已知),
∴∠3=
∵∠1=∠2(已知),
∴∠1+∠FAD=∠2+∠FAD(
即∠FAC=∠EAD,
∴∠3=
∴AE∥BC(

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ma=mb,則下列等式不一定成立的是(

A. a=b B. ma+3=mb+3 C. -2ma=-2mb D. ma-2=mb-2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解答
(1)計算:2(x+y)(x﹣y)﹣(x+y)2;
(2)解方程: ;
(3)先化簡,再求值:v,在0,1,2三個數(shù)中選一個合適的數(shù)并代入求值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線與x軸交于A(﹣1,0)、B(5,0)兩點,與y軸交于點C(0,5).

(1)求該拋物線所對應(yīng)的函數(shù)關(guān)系式;

(2)D是笫一象限內(nèi)拋物線上的一個動點(與點C、B不重合),過點D作DF⊥x軸于點F,交直線BC于點E,連結(jié)BD、CD.設(shè)點D的橫坐標為m,△BCD的面積為S.

①求S關(guān)于m的函數(shù)關(guān)系式及自變量m的取值范圍;

②當m為何值時,S有最大值,并求這個最大值;

③直線BC能否把△BDF分成面積之比為2:3的兩部分?若能,請求出點D的坐標;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】十邊形的外角和是

查看答案和解析>>

同步練習(xí)冊答案