已知四邊形ABCD的對角線AC、BD相交于點O,給出下列條件:①AB∥CD,②OA=OC,③AB=CD,④∠BAD=∠DCB,⑤AD∥BC.
(1)從以上5個條件中任意選取2個條件,能推出四邊形ABCD是平行四邊形的有(用序號表示)______;(至少寫出三種情況)
(2)從(1)中選出推理在兩步以上的一種情況進行證明.(要求畫出圖形,寫出證明過程即可)
【答案】
分析:(1)根據(jù)平行四邊形的5種判定方法,能推出四邊形ABCD是平行四邊形的有①③,①⑤,①④,①②,②⑤,④⑤;
(2)可選①②或①④,加以證明即可.
解答:解:(1)①③,①⑤,①④,①②,②⑤,④⑤(寫出三種情況即可)
(2)解法一:若選①②
,
如圖,∵AB∥CD,
∴∠ABD=∠BDC.
又∵OA=OC,∠AOB=∠COD,
∴△ABO≌△CDO.
∴BO=DO.
∴四邊形ABCD是平行四邊形.
解法二:若選①④.
如圖,∵AB∥CD,
∴∠ABD+∠BCD=180度.
又∵∠BAD=∠DCB,
∴∠ABC+∠BAD=180度.
∴AD∥BC.
∴四邊形ABCD是平行四邊形.
點評:本題考查了平行四邊形的判定,解答此類題的關鍵是要突破思維定勢的障礙,運用發(fā)散思維,多方思考,探究問題在不同條件下的不同結論,挖掘它的內在聯(lián)系,向“縱、橫、深、廣”拓展,從而尋找出添加的條件和所得的結論.